Proceedings of the International Conference , “Computational Systems and Communication Technology” Jan.,9,2009 - by Lord Venkateshwaraa Engineering College,
Kanchipuram Dt.PIN-631 605,INDIA

Implementing repository-based tool Support for Managing Architectural Knowledge
B.Anniprincy, , Research Scholar,Sathyabama University, Chennai.

Email-id: shiyaprincy @yahoo.com
Dr. S. Sridhar, Principal, Lord Venkateswara College of Engineering

E-mail : drssridhar@yahoo.com

Abstract
Software architecture knowledge is rarely documented, which results in lack of access to knowledge underpinning the design decisions and process. Many researchers and practitioners believe that architectural knowledge should be systematically captured and rigorously managed. To address this issue, this research has developed a conceptual framework for managing architecture design knowledge. A repository -based knowledge management tool,(RBKMT) has been developed and is being trialled to help systematise the architecture knowledge management and evaluation process . The proposed frame work follows principles from knowledge engineering and from the management literature on how to prevent failure in KMS. This paper illustrates the proposed framework with an implementation to support a community of science.
1. Introduction
Although significant progress has been made to support the various activities of the software architecture process over the last decade, there has been little effort on developing techniques and tools for effectively capturing and managing the knowledge required or generated during the architecture process. This paper has developed a framework for managing architectural knowledge. This framework consists of techniques for capturing design decisions and contextual information, an approach to distilling and documenting architectural information from patterns, and a data model to characterise architectural knowledge. The central objective of this framework is to provide a theoretical underpinning and conceptual guidance to design and implement repository-based tool support for managing architectural knowledge. The novelty of this framework resides in its ability to incorporate all the components into an integrated approach, which has been implemented in a repository-based tool called RBKMT (repository -based knowledge management tool]. RBKMT is aimed at enabling organisations to create a repository of critical design knowledge about their software applications. This tool support particularly interested for managing technical knowledge, capturing contextual information surrounding critical design decisions, and managing architectural assets for reusability purposes. This paper describes the process and logistics of tailoring, deploying, and trialling RBKMT in the context of evaluating architectures. It also reports what the research group and the industrial partner have learned from this experience in terms of technical and practical

recommendations for building and trialling knowledge management tool support in the context of software architecture process.
2. Managing architectural knowledge

Software architecture knowledge is rarely documented, which results in lack of access to knowledge underpinning the design decisions and process. Many researchers and practitioners believe that architectural knowledge should be systematically captured and rigorously managed. Otherwise, it usually results in downstream consequences such as:

• The evolution of the system becomes complex and cumbersome and may result in violation of fundamental design decisions.

• Inability to identify design errors and track changes.

• Inadequate clarification of arguments and context sharing about the design and process.

•Difficult to access or discover knowledge required to make or evaluate architectural design decisions.

• loss of key personnel may mean loss of knowledge .
3. An Overview of RBKMT
In order to provide tool support for managing architectural knowledge, we have developed RBKMT, which incorporates concepts from knowledge management experience factories, and pattern-mining paradigms. RBKMT is a web-based tool, which provides a knowledge repository, templates and various features to capture, manage, and present architectural knowledge. RBKMT’s knowledge repository is logically divided into two types of knowledge:

1. Generic: including general scenarios, patterns, quality attributes, design options.

2. Project specific: including concrete scenarios, contextualised patterns, quality factors, architecture decisions. Generic architectural knowledge is accumulated by using knowledge capture techniques .Project-specific architectural knowledge consists of the artefacts either instantiated from the generic knowledge or newly created during different activities of the software architecture process. Access to a repository of generic architectural knowledge enables designers to use accumulated “wisdom” from different projects when devising or evaluating architecture decisions for projects in the same or similar domains. The project specific part of the repository captures and consolidates other architectural knowledge artefacts and rationale that are specific to a particular project such as concrete scenarios, design history, and findings of architecture evaluation. A project specific architectural knowledge repository is also populated with knowledge drawn from an organisational repository, standard work products of the design process, logs of the deliberations and histories of documentation to build organisation’s architecture design memory. Here we briefly discuss the four main services of RBKMT:

• The knowledge acquisition service provides various forms and editing tools to create new generic or project specific knowledge in the repository. The knowledge capture forms are based on various templates that we have designed to help maintain consistency during knowledge elicitation and structuring processes.

• The knowledge maintenance service provides different functions to modify, delete and instantiate the artefacts stored in the knowledge repository. Moreover, this service also implements the constraints on the modifications of different artefacts based on the requirements of a particular domain.

• The knowledge retrieval service helps a user to locate and retrieve desired artefacts along with the information about the artefacts associated with them. RBKMT provides three types of search mechanisms. A basic search can be performed within a single artefact based on the values of its attributes or keywords. An advanced search string is built using a combination of logical operators within a single or multiple artefacts.

• The knowledge presentation service presents knowledge in a structured manner at a suitable abstraction level by using templates and representation mechanisms like utility .These services not only satisfy the requirements identified to provide knowledge management support for architecture design and evaluation methods but also support many of the use cases. RBKMT can support several of the ten techniques for the Software Engineering Institute (SEI)’s methods for architecture

evaluation. For example, RBKMT provides suitable templates to capture and present architectural artefacts and contextual information for making architecture evaluation techniques consistent across evaluators. RBKMT’s services also provide different features to support activities such as generating a utility tree, identifying a suitable reasoning framework, recording evaluation findings, and building a results tree to visualise risks and risk themes of an architecture evaluation method. In addition, RBKMT helps the evaluation team to capture findings from architecture evaluation decisions and the justification for those finding.

4. Framework for defining Metamodels for RBKMT
The metamodelling tool is in an essential role in domain-specific modelling. RBKMT is the tool support for defining DSML and the code generator. The definition of the language means defining the syntax of the language (i.e. what kind of constructs the language contains and what their relations are). In the code generator, the domain model is interpreted and the constructs in the model gain a meaning, so the code generator provides the semantics for the language. The following things are considered when the tools are evaluated:

1. Tool provider

2. Supported platforms

3. Licence

4. Documentation and support

• User’s guide for the tool

• Tutorials

• Instructions for the code generator definition

· E-mail support

5. Metamodelling language

6. Constraint definition possibilities

7. Code generation possibilities

• Generator definition language

• Generator output language.

The metamodelling tool should be available for the Windows platform, have the required documentation and tutorials available, be easy-to-learn, be easy-to use (easy to define the metamodel and the code generator), and be able to generate Java code and all the other necessary structures.
5. Domain-Specific modelling language for developing repository-based tool.
This section describes the design of the domain-specific modelling language for developing repository-based tool.. First, some requirements are set for DSML. Second, the approach for defining DSML is selected. Then domain analysis is made to find out the relevant domain concepts. Finally, the scope of DSML is stated.
 Requirements for DSML

The requirements are given from R1 to R5. R1 means that the scope of the domain should be clearly declared so that it is easy to decide whether DSML answers a certain need. R2 emphasises that familiar concepts should be used with reasonable effort. R3 says that DSML should have easy-to-use notation, which is important because it has to be easier to use DSML than to develop. R4 ensures that the user is not able to construct incorrect models with DSML. An important aspect when designing DSML is to make sure that DSML can be extended, since in the future there may be a need for new features or even the domain itself may need to be extended. The extensibility requirement is stated in requirement R5. This can be realised by introducing multiple layers to the language. It is possible to present a simple language in a single layer, but when the number of language concepts starts to grow, multiple layers become necessary.

R1 The domain of DSML should be explicitly stated

R2 The language concepts must be understood by people familiar with the domain

R3 The notation should be easy to use

R4 DSML should have well-defined constraints

R5 It should be possible to extend DSML (i.e. DSML should be composed of multiple layers)
Implementation of DSML
In this section the implementation of the domain-specific modelling language is described. There are two alternatives for the definition of a domain-specific modelling language: form-based metamodelling and graphical metamodelling. In this work, form-based metamodelling was used because of the better precision over graphical metamodelling. In form-based metamodelling, there is a proprietary tool for defining each of the metatypes of the GOPPRR language (Graph tool, Object tool, Port tool, etc.). Each object, relationship, role, and property is defined in their respective tools and then the concepts are bound together in the Graph tool. In the Graph tool, the following tasks are carried out:

1. Defining the name and properties of the graph.

2. Declaring which previously defined objects, relationships, and roles may appear in the graph.

3. Defining which relationships can appear between which objects. This includes also specifying the roles of each object in the relationship. Also cardinalities can be assigned to the roles which specify how many times a role may be used in the relationship.

4. Defining possible decomposition and explosion graphs for the objects in the graph (in this work, only the decomposition structure is used, which means that the details of an object are described with a proprietary graph).

5. Defining constraints for the graph (e.g. how many times an object may occur in the graph).

The finalisation of the language includes also defining the graphical symbols for the objects, roles, and relationships. The symbols are defined with the Symbol Editor tool, which can be opened from the Object, Role, or Relationship tool. The definition of symbols is a very important task, since it has a major effect on the usability of DSML

Conclusions
A frame of reference for representing variability in domain-specific modelling was presented in this work. The domain-specific approach enabled the binding of the variant sets of the Style base in a more flexible way than with the traditional code-centred way, since the binding can be done in the modelling phase instead of in the manual implementation phase. DSML developed in this work can be used for modelling a repository-based tool .DSML speeds up the development of repository-based tool and thus demonstrates the usefulness of the domain-specific modelling approach.

References
[1] Greenfield J. & Short K. (2004) Software Factories: Assembling Applications with Patterns, Models, Frameworks and Tools. Wiley Publishing, Inc.,Indianapolis, USA. 666 p.

[2] Tolvanen J. P. (Accessed: 18.1.2008) Domain-Specific Modelling: How DSM Code Generation Can Go Beyond The Benefits Delivered By UML.

URL: http://reddevnews.com/techbriefs/print.aspx?editorialsid=120.

[3] Selic B. (2003) The Pragmatics of Model-Driven Development. IEEE Software, Vol. 20, Issue 5, pp. 19.25.
[4] Luoma J., Kelly S. & Tolvanen J. P. (2004) Defining Domain-Specific Modeling Languages: Collected Experiences. In: Proceedings of the 4th OOPSLA Workshop on Domain-Specific Modeling (DSM.04), Oct. 25, Vancouver, British Columbia, Canada. Pp. 1.10.

[5] Gamma E. & Beck K. (2004) Contributing to Eclipse: Principles, Patterns and Plug-Ins. Addison-Wesley Professional, Boston. 395 p.

[6] Anonymous. (Accessed: 16.1.2008) About GEMS. URL:

http://www.eclipse.org/gmt/gems/about.php.

[7] Anonymous. (Accessed: 31.8.2007) EclipsePlugins: Details for the Merlin Generator Eclipse Plug-in. URL: http://eclipse-plugins.2y.net/eclipse/plug in_details.jsp?id=916.

[8] Anonymous. (Accessed: 17.1.2008) Eclipse Modeling Framework Project (EMF). URL: http://www.eclipse.org/modeling/emf/.

[9] Anonymous. (Accessed: 17.1.2008) Eclipse Graphical Editing Framework

Project (GEF). URL: http://www.eclipse.org/gef/.
Copy Right @CSE/IT/ECE/MCA-LVEC-2009

