Proceedings of the International Conference , “Computational Systems and Communication Technology” Jan.,9,2009 - by Lord Venkateshwaraa Engineering College,
 Kanchipuram Dt.PIN-631 605,INDIA

CRYPTOLOGY AND RANDOMIZED VERIFICATION BASED AUTOMATIC PASSWORD SECURITY
T.S.Thangavel1 and Dr. A. Krishnan2
1 AP/ Dept of MCA , K.S.Rangasamy College of Technology Tiruchengode.

tsthangavel123@yahoo.in

2 Dean , K.S.Rangasamy College of Engineering, Tiruchengode.

ABSTRACT

The techniques such as Secured Socket Layer (SSL) with client-side certificates are well known in the security research community. Most commercial web sites rely on a relatively weak form of password authentication; the browser simply sends a user’s plaintext password to a remote web server, often using SSL. Even when used over an encrypted connection, this form of password authentication is vulnerable to attack. The proposal design and develop a user interface, and implementation of a browser extension, password hash, that strengthens web password authentication. Providing customized passwords, can reduce the threat of password attacks with no server changes and little or no change to the user experience. The proposed techniques are designed to transparently provide novice users with the benefits of password practices that are otherwise only feasible for security experts. Experimentation are done with Internet Explorer and Fire fox implementations and report the result of initial user.

Keywords: Secured Socket Layer, Password authentication, Random Password Generator, Hash Functions, Kerberos, Pseudo Random Generator.

1. INTRODUCTION

A random password generator is software program or hardware device that takes input from a random or pseudo-random number generator and automatically generates a password. Random passwords can be generated manually, using simple sources of randomness such as dice or coins, or they can be generated using a computer.
While there are many examples of "random" password generator programs available on the Internet, generating randomness can be tricky and many programs do not generate random characters in a way that ensures strong security. A common recommendation is to use open source security tools where possible, since they allow independent checks on the quality of the methods used. Note that simply generating a password at random does not ensure the password is a strong password, because it is possible, although highly unlikely, to generate an easily guessed or cracked password.
A password generator can be part of a password manager. When a password policy enforces complex rules, it can be easier to use a password generator based on that set of rules than to manually create passwords. In situations where the attacker can obtain an encrypted version of the password, such testing can be performed rapidly enough so that a few million trial passwords can be checked in a matter of seconds.
The function rand presents another problem. All pseudo-random number generators have an internal memory or state. The size of that state determines the maximum number of different values it can produce; an n-bit state can produce at most 2n different values. On many systems rand has a 31 or 32 bit state, which is already a significant security limitation.
Some computer operating systems provide much stronger random number generators. Windows programmers can use the Cryptographic Application Programming Interface function CryptGenRandom. Another possibility is to derive randomness by measuring some external phenomenon, such as timing user keyboard input. Using random bytes from any of these sources should prove adequate for most password generation needs.
2. LITERATURE REVIEW
Computer applications may require random numbers in many contexts. Random numbers can be used to simulate natural or artificial phenomena in computer simulations, many algorithms that require randomness have been developed that outperform deterministic algorithms for the same problem, and random numbers can be used to generate or verify passwords for cryptography-based computer security systems.
The present invention relates to the use of random numbers in such security systems, called as cryptographic applications. Specifically, the present invention pertains to generating a random number in a secure manner for such cryptographic applications. In the context of cryptographic applications, there may be an hostile trespasser or agent, who desires to infiltrate the security of cryptographic security system in order to gain access to sensitive, confidential, or valuable information contained therein. For example, banks often encrypt their transactions and accounts [1].
One common method for circumventing a cryptographic application is to guess at potential passwords or cryptographic key, which are then submitted on a trial basis. This process is repeated until, by happenstance, the valid password is chanced upon. Fortunately, this process is extremely time consuming and inefficient. Also, preventative action can be taken to render this type of attack highly ineffective. However, if the random number generator used in generating valid passwords is somehow flawed in any way, the hostile agent can potentially take advantage of this flaw to circumvent the security of the system.
Many prior art methods exist for generating random numbers. These prior art methods typically involve the use of some type of chaotic system. A
chaotic system is one with a state that changes over time in a largely unpredictable manner. To use the chaotic system to generate a random
number, there is some means of converting the state of the system into a
sequence of bits (i.e., a binary number). In the past, chaotic systems
were based on various sources, such as the sound of radio static, the
output of a noisy diode, output of a Geiger counter, or even the motion of
clouds. These chaotic systems can be converted to produce binary numbers
by using standard techniques [4].
For instance, a pseudo-random binary string can be generated from the digital recording of static noise via a digital microphone. Alternatively, a noisy diode can be sampled at a suitable frequency and converted into a digital signal, or a picture of an area of the sky can be taken and subsequently scanned and digitized. These resulting binary strings that are generated over time are generally random in nature.
However, there are several problems associated with simply using a chaotic system as a source of random numbers. First, chaotic systems can be
completely or partially predicted over small amounts of time. For example,
the position of clouds in some area of the sky at some time can be used to
achieve reasonably accurate predictions of the position of clouds in the
same area a short time into the future.[3]
The time bottleneck can be avoided in most computer applications by using pseudo-random numbers instead of random numbers [5].
A pseudo-random number generator deterministically generates a sequence of numbers by some computational process from an initial number, called a seed. The goal of the computational process is to generate a sequence of numbers from the seed that appear to be random. In other words, an outside observer cannot predict the next number to be generated from the list of numbers previously generated without expending a great deal of computational effort. Thus, to generate a long sequence of pseudo-random numbers, one need only generate a much shorter random number to use as the seed for the pseudo-random number generator.

Web password hashing is often implemented incorrectly by giving the remote site the freedom to choose the salt. Using an online attack, a phisher could send to the user the realm and nonce the phisher received from the victim site. The user’s response provides the phisher with a valid password digest for the victim site. Password hashing implemented in Kerberos has a similar vulnerability.
Finally, a number of existing applications including Mozilla, Firefox provide convenient password management by storing the user’s web passwords on disk, encrypted under some master password. When the user tries to log in to a site, the application asks for the master password and then releases the user’s password for that site. Thus, the user need only remember the master password. The main drawback compared to PwdHash is that the user can only use the web on the machine that stores his passwords. On the plus side, password management systems do provide stronger protection against dictionary attacks when the user chooses a unique, high entropy password for each site

3. SYSTEM MODEL
The system model concerned with attacks on the extension that originate on malicious phasing sites. Password hashing is computed using a Pseudo Random Function (PRF) as follows:

Hash (pwd, dom) = PRFpwd(dom)

Where the user’s password pwd is used as the PRF key and the remote site’s domain name dom or some variant is used as the input to the PRF. The hash value is then encoded as a string that satisfies the site’s password encoding rules, under control of a configuration file used by the browser extension.

The goal, however, is to defend against web scripting attacks with minimal change to the user experience. For this leverage the browser extension as a protective but largely transparent intermediary between the user and the web application. All input can be first monitored and secured by the browser extension before the web application is aware that the user is interacting with it.

This requires a mechanism by which users can notify password hash browser extension that they are about to enter a password. Password has canned then takes steps to protect the password as it is being entered. There are two closely related methods i.e., password-prefix and the second password-key.

Password Prefix

Password-prefix is an elegantly unobtrusive mechanism to defend against the JavaScript attacks. Users are asked to prefix their passwords with a short, publicly known sequence of printable characters. Password hash monitors the entire key stream and takes protective action when it detects the password-prefix sequence. The password-prefix must be short but unlikely to appear frequently in normal text input fields. A common prefix shared among all users of the extension allows the extension to be portable without requiring any changes of settings. For internationalization, the password prefix should not be an English word at all, but something that could be easily remembered and typed.

The extension has two modes i.e., normal mode and password mode. The extension monitors all keyboard events. In normal mode, it passes all keyboard events to the page as is. When the password-prefix is detected in the key stream, the extension switches to password mode and does the following i.e., it internally records all subsequent key presses, and it replaces the user’s keystrokes with a fixed sequence and passes the resulting events to the browser.

The first keystroke following the password-prefix is replaced with “A,” the second with “B,” and so on. This translation continues until focus leaves the password field, at which point the extension reverts back to normal mode. In other words, all keystrokes entered following the password-prefix are hidden from the browser and from scripts running inside the browser until focus leaves the field.

Users are protected from mock password field attacks that confuse them into entering a password into an insecure location. This password-prefix approach blocks the JavaScript attacks and provides a number of additional benefits:

Legitimate web pages often collect PIN’s or social security numbers via password fields. Password Hash will not hash the data in such fields because this data does not contain the password prefix.

The password prefix mechanism automatically provides the right functionality, assuming the old password does not contain the password-prefix. The password-prefix conveniently lets users decide which passwords they want to protect using hashing and which passwords they want left as is.

4. METHODOLOGY

Random password generators normally output a string of symbols of specified length. These can be individual characters from some character set, syllables designed to form pronounceable passwords, or words from some word list to form a passphrase. The program can be customized to ensure the resulting password complies with the local password policy, say by always producing a mix of letters, numbers and special characters.

The strength of a random password can be calculated by computing the information entropy of the random process that produced it. If each symbol in the password is produced independently, the entropy is just given by the formula

H = Llog2 N = L (log N/ log 2)
Where N is the number of possible symbols and L is the number of symbols in the password. The function log2 is the base-2 logarithm. H is measured in bits.

	Symbol set
	N
	Entropy/Symbol

	Digits only (0-9) (e.g. PIN)
	10
	3.32 bits

	Single case letters (a-z)
	26
	4.7 bits

	Single case letters and digits (a-z, 0-9)
	36
	5.17 bits

	Mixed case letters and digits (a-z, A-Z, 0-9)
	62
	5.95 bits

	All standard U.S. keyboard characters
	94
	6.55 bits

	Dice ware word list
	7776
	12.9 bits

Thus an eight character password of single case letters and digits would have 41 bits of entropy (8 x 5.17). The same length password selected at random from all U.S. computer keyboard characters would have 52 bit entropy; however such a password would be harder to memorize and might be difficult to enter on non-U.S. keyboards. A ten character password of single case letters and digits would have essentailly the same strength (51.7 bits). Any password generator is limited by the state space of the pseudo-random number generator, if one is used. Thus a password generated using a 32-bit generator has maximum entropy of 32 bits, regardless of the number of characters the password contains.

5. IMPLEMENTATION

The system implemented the prototype as a Browser Helper Object for Internet Explorer. The extension registers three new objects i.e., an entry in the Tools menu (to access extension options), an optional new toolbar, and the password protection service itself. Internet Explorer support COM event sinks that enable Browser Helper Objects to react to website events. Use these sinks to detect focus entering and leaving password fields, drag and drop events, paste events and double click events. For the Internet Explorer version of the extension, leave the masked characters in the field until the user submits the form, then we intercept the submission event with a Before Navigate handler. Internet Explorer does not allow extensions to edit the form data in Before Navigate directly. Rather, cancel the original Navigate event and fire a new, modified one. The extension includes a data structure to detect which Navigate events were fired by the extension, and which ones were fired as a result of user action, so that it does not attempt to translate the form data more than once and get stuck in a loop.

CONCLUSION
The password hashing method is extremely simple, rather than send the user’s clear text password to a remote site, it sends a hash value derived from the user’s password, and the site domain name. Password Hash captures all user input to a password field and sends hash (pwd, dom) to the remote site. The hash is implemented using a Pseudo Random Function keyed by the password. Since the hash output is tailored to meet server password requirements, the resulting hashed password is handled normally at the server; no server modifications are required. This technique deters password phishing since the password received at a phishing site is not useful at any other domain. The proposed model implements the password hashing as a secure and transparent extension to modern browsers.

REFERENCES

1) N. Chou, R. Ledesma, Y. Teraguchi, and J. Mitchell, “ Client-side defense against web based identity theft “, In Proceedings of Network and Distributed Systems Security (NDSS), 2004.

2) J. A. Halderman, B.Waters, and E. Felten “A convenient method for securely managing passwords” To appear in Proceedings of the 14th International World Wide Web Conference (WWW 2005), 2005.

3) F. Hao, P. Zieli´nski, “A 2-round anonymous veto protocol,” Proceedings of the 14th International Workshop on Security Protocols, SPW’06, Cambridge, UK, May 2006.

4) Muxiang Zhang, “Analysis of the SPEKE password-authenticated key exchange protocol,” IEEE Communications Letters, Vol. 8, No. 1, pp. 63-65, January 2004.

5) Z. Zhao, Z. Dong, Y. Wang, “Security analysis of a password-based authentication protocol proposed to IEEE 1363,” Theoretical Computer Science, Vol. 352, No. 1, pp. 280–287, 2006.
Copy Right @CSE/IT/ECE/MCA-LVEC-2009

