Proceedings of the International Conference , “Computational Systems and Communication Technology” Jan.,9,2009 - by Lord Venkateshwaraa Engineering College,
Kanchipuram Dt.PIN-631 605,INDIA

Virtualization Technology for Software Rejuvenation

and High Performance Computing

V.DharmaPrakash,
Dr.C.Kavitha

Lecturer – Dept of MCA, Professor – Dept of MCA

K.S.Rangasamy College of Technology, Tiruchengode

Abstract

The phenomenon that the state of software degrades with time is known as software aging. The primary method to fight aging is software rejuvenation. This paper presents new ways of effective software rejuvenation using virtualization for addressing software aging and also for High Performance Computing. This new approach is meant to be the less disruptive as possible for the running service and to get a zero downtime in most of the cases. Virtualization is a common strategy for improving the utilization of existing computing resources, particularly within data centers. However, its use for high performance computing (HPC) applications is currently limited despite its potential for both improving resource utilization as well as providing resource guarantees to its users.

Keywords: Software aging, Software rejuvenation, Virtualization, High Performance Computing

1. Introduction

As business becomes increasingly dependent on information and computing technology, continuous availability is a universal concern. It has now been well-established that failures of computer systems are more often due to software faults than due to hardware faults. Recently, the wide-spread phenomenon of “software aging”, one in which the state of a software system gradually degrades with time and eventually leads to performance degradation, transient failures or even crushes of applications, has been reported. The primary causes of this degradation are the exhaustion of operating system resources, data corruption and numerical error accumulation. Aging has not only been observed in software used on a mass scale but also in specialized software used in high availability and safety critical applications. The most natural procedure to counteract such software aging is to apply the well-known technique of software rejuvenation. It involves occasionally stopping the software application, cleaning its internal state and/or its environment, and then restarting it. By removing the accrued error conditions and freeing up or decrementing operating system (OS) resources, this technique proactively prevents unexpected future system outages.

Virtualization technology enables a single computer to run multiple operating systems simultaneously. Virtualization technologies find important applications over a wide range of areas such as server consolidation, secure computing platforms, supporting multiple OS, kernel debugging and development, system migration, etc, resulting in widespread usage. Virtualization allows abstracting away the real hardware configuration of a system. One method of virtualizing the hardware resources of a computer involves using a layer of software, called the Virtual Machine Monitor (VMM), to provide the illusion of real hardware for multiple virtual machines (VMs). Inside each VM, the operating system (often called the guest OS) and applications run on the VM’s own virtual resources such as virtual CPU, virtual network card, virtual RAM, and virtual disks. A VMM can be hosted directly on the computer hardware or within a host operating system. Virtual machines offer a degree of flexibility that is not possible to obtain on physical machines. Virtualization has proved as a successful tool for management of complex IT-environments and it is emerging as a technique to increase system performance.

2. Proposed System:

In the proposed system, it can be able to optimize the rejuvenation operation without requiring any additional hardware. The proposed system is totally supported by software and can be easily deployed. In the proposed system (refer figure.1), on top of virtualization middleware layer, there are three virtual machines per application server. A software load-balancer (VM-LB) will be run on VM1 that will be responsible for the detection of software aging or some potential anomaly. We use the active VM(primary VM) to run the main application server and a standby VM where we instantiate a replica of the application server that works as a hot-standby. In hot-standby configuration, component state is replicated to the standby on any change, i.e. the standby component is always up-to-date. In case of a failure, the standby component replaces the failed component and continues to operate based on the current state. The hot-standby configuration offers continuous availability without any interruption of service. Aging-Detector and Anomaly-Detector will be used for the detection of software aging or some potential anomaly. When software aging or some potential anomaly happens VM-LB will trigger a rejuvenation operation. In VM1, other necessary software modules will be installed. In order not to lose any in-flight request or session data at the time of rejuvenation, first, we start the standby server; all the new requests and sessions are migrated from the active server to standby server. When all the ongoing requests are finished in primary server, then the primary VM will be rejuvenated.

[image: image1.wmf]
Figure 1

3. System Model : In this section, first determining how virtualization technology can improve the software rejuvenation action and then implementation of virtualization technology for HPC.

 3.1 For software rejuvenation action

The assumptions used in the modeling are as follows:

· Failure rate and repair rate of the VM are identical at all states.

· Unstable rate, the speed of escaping the healthy condition of VM is identical at all states.

· Rejuvenation rate, the frequency of rejuvenation is identical at all states.

· The probability of going from normal state to failure state is negligible compared to other probabilities.

· During the rejuvenation process, the system can provide the continuous service except non virtualized scenario.

3.2 For High Performance Computing
Most virtualization strategies fall into one of four major categories:

3.2.1. Full Virtualization: Also sometimes called hardware emulation. In this case an unmodified operating system is run using a hypervisor to trap and safely translate/ execute privileged instructions on-the-fly. Because trapping the privileged instructions can lead to significant performance penalties, novel strategies are used to aggregate multiple instructions and translate them together. Other enhancements, such as binary translation, can further improve performance by reducing the need to translate these instructions in the future.

3.2.2. Paravirtualization: Like full virtualization, paravirtualization also uses a hypervisor, and also uses the term virtual machine to refer to its virtualized operating systems. However, unlike full virtualization, paravirtualization requires changes to the virtualized operating system. This allows the VM to coordinate with the hypervisor, reducing the use of the privileged instructions that are typically responsible for the major performance penalties in full virtualization. The advantage is that paravirtualized virtual machines typically outperform fully virtualized virtual machines. The disadvantage, however, is the need to modify the paravirtualized virtual machine / operating system to be hypervisor-aware. This has implications for operating systems without available source code.

3.2.3. Operating System-level Virtualization: The most intrusive form of virtualization is operating system level virtualization. Unlike both para virtualization and full virtualization, operating system-level virtualization does not rely on a hypervisor. Instead, the operating system is modified to securely isolate multiple instances of an operating system within a single host machine. The guest operating system instances are often referred to as virtual private servers (VPS). The advantage to operating system-level virtualization lies mainly in performance. No hypervisor / instruction trapping is necessary. This typically results in system performance of near-native speeds. The primary disadvantage is that all VPS instances share a single kernel. Thus, if the kernel crashes or is compromised, all VPS instances are compromised. However, the advantage to having a single kernel instance is that fewer resources are consumed due to the operating system overhead of multiple kernels.

3.2.4. Native Virtualization: Native virtualization leverages hardware support for virtualization within a processor itself to aid in the virtualization effort. It allows multiple unmodified operating systems to run alongside one another, provided that all operating systems are capable of running on the host processor directly. That is, native virtualization does not emulate a processor. This is unlike the full virtualization technique where it is possible to run an operating system on a fictional processor, though typically with poor performance. In x86, 64 series processors, both Intel and AMD support virtualization through the Intel-VT and AMD-V virtualization extensions. x86, 64 processors with virtualization support are relatively recent, but are fast becoming widespread.

Virtualization creates an abstraction of the hardware and executes one or several virtual machines (VMs) on top of this virtualized hardware; in some instances, the virtual machine may also directly access the hardware for performance purposes. Virtualization solutions are today based on the concept of a Virtual Machine Monitor (VMM), also called a hypervisor. The VMM is responsible for the hardware virtualization and execution of VMs on top of the virtualized hardware. The VMM is typically a small operating system that does not include hardware drivers. To access physical resources, the VMM is typically coupled with a standard operating system, which provides device/hardware access. There are two approaches employed, formalized by Goldberg in the 1970’s as: (i) type-I virtualization where the VMM and VM run directly on the physical hardware, and (ii) type-II virtualization where the VMM and VM run on a host operating system.

Since the type-I comparable to that of native execution. In contrast, type-II virtualization incurs additional overhead due to the layering of the VMM on top of the host OS when servicing resource requests from VMs. The type-II layering makes its approach more suitable for the development phase, where some performance may be reduced in exchange for greater diagnostic and development capabilities. Today, several system-level virtualization solutions are available, for instance Xen (type-I), QEMU (type-II), or VMWare workstation & server (type-II). However, these solutions are not suitable for HPC because they were not designed to meet the specialized needs of HPC. For instance, Xen has become a rather massive micro-kernel that includes unneeded features for HPC, e.g., a network communication bus; QEMU and VMWare do not support direct access to high-performance network solutions. Virtualization solution for HPC requires only a small set of system services, such as migration, suspend/resume, and checkpoint / restart of VMs. In addition, the solution should afford developers efficient access to resources, a VM adapted scheduling policy, and be lightweight in order to: (a) minimize the system footprint, and (b) guarantee performance prediction and isolation for running VMs.

Based on usage criteria, we can classify the problems as follows :

i) Multi OS:- Some virtualization technology only support a type of OS (Linux, Windows, etc.) while others are more generic and can run Linux on Windows, Windows on Linux, etc. MultiOS virtualization systems include VMware and Xen.

ii) Kernel Development/Debugging :- Some users need to develop the kernel. This criteria will define if,yes or no, those tasks can be achieved with the chosen virtualization technique.

iii) OS Installation Process :- Some users need to reproduce the complete installation of a system (Install CD, Network Boot, Hard disk partitioning, etc.).

iv) Resources consumption:- This criteria will define how much resources a virtual computer need to use in order to be fully functional. For each virtualization technique, the approximative resource consumption of a fully functional virtual server has been estimated.

v) Dynamical allocation of resources:- Some users needs to dynamically change the resources used by a virtual computer. Some virtualization programs allow the user to change live the resources available for the virtual server while other can not do this.

vi)Security:- All virtualization techniques increases security by allowing system administrators to cleanly separate services on different virtual servers, some of them offers additional protections with rules/roles and additional security model that can make a virtual server more robust than a real one.

Hypervisor for High Performance

Computing

The core of a virtualization solution for HPC is a HPC Hypervisor. Current VMM has been initially designed for the server consolidation market. Because of this context and because of the lack of hardware support for virtualization, current VMMs have huge system footprint. This important system footprint is created by two different

factors: (i) the VMM is always coupled to a HostOS which is a full operating system, (ii) for virtualization purpose

the VMM store a large dataset in memory.

VMM Memory Footprint Typical system-level virtualization solutions typically have a “view” of the virtual machine memory space. This view is used to translate the memory access from the virtual machine to the physical memory. This memory footprint has a direct impact on modern execution platform which are most of the time composed of multicore processors with shared cache. Typically if the core non-shared cache is smaller than the VMM memory footprint, and if the application is memory constrained, cache misses and

flushes generated by the VMM execution will interfere directly with the application execution (generating a lot of cache misses and flushes). In order to address this issue, two approaches are possible:

(i) assign the VMM to a specific core and decrease its memory footprint to make it fit in the none-shared memory associated to the core where the VMM is running, (ii) include some hardware support to store part of the VM’s “memory map” directly on the hardware.

System Footprint of the Tuple VMM/HostOS : The VMM needs to be coupled to an HostOS which is needed

to host the hardware drivers. Everytime an application running inside a virtual machine wants to access the hardware (e.g. for network communications), it has to go be default through the HostOS . The system footprint of a system-level virtualization solution is therefore not only composed of the system footprint of the VMM itself. The system footprint is actually mostly composed by the HostOS. In order to achieve high performance computing, the HostOS footprint has to be minimized in order to limit the interference with the application execution. This effort is similar to the standard OS tuning effort for HPC platforms, which includes eviction of unnecessary daemons and services. Each OS has its own advantages and targeted scientific applications. Flexibility in OS deployment is needed as these applications need to be able to run on the OS they were designed for. Virtualization technology is capable of providing testbeds for OS and application development and deployment, and customized system environments for applications by allowing the interchanging of the OS and its Runtime Environment (RTE) component on demand.

4. Conclusion

 We conclude that virtualization can be helpful for software rejuvenation and fail-over in the occurrence of application failures and software aging and virtualization solution for high performance computing.

References

1. Thandar Thein, Sung-Do Chi, and Jong Sou Park “Improving Fault Tolerance by Virtualization and Software Rejuvenation”- IEEE Transactions on Second Asia International Conference on Modelling & Simulation pp 855 – 860, 2008

2. Geoffroy Vall´ee , Thomas Naughton , Christian Engelmann , Hong Ong and Stephen L. Scott “System-Level Virtualization for High Performance Computing” - IEEE Transactions on 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing pp 636 – 643, 2008.

3. J. P. Walters, Vipin Chaudhary, and Minsuk Cha , Salvatore Guercio Jr. and Steve Gallo “A Comparison of Virtualization Technologies for HPC ” - IEEE Transactions on 22nd International Conference on Advanced Information Networking and Applications pp 861 – 868, 2008.

4. Benoˆıt des Ligneris “Virtualization of Linux based computers ” Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications .

5. M. Grottke, Lei Li, K. Vaidyanathan and K.S. Trivedi, “Analysis of SoftwareAging in a Web Server”, IEEE Transactions on Reliability, Vol. 5, No. 3, September 2006.

6. Virtual Machines: Online Available: http://www.vmware.com

Hardware

VMM

VMM

VMM

Host OS

Type I

Hardware

Host OS

VMM

VMM

VMM

Type II

Copy Right @CSE/IT/ECE/MCA-LVEC-2009

