Proceedings of the International Conference , “Computational Systems and Communication Technology” Jan.,9,2009 - by Lord Venkateshwaraa Engineering College,
 Kanchipuram Dt.PIN-631 605,INDIA

Checking Reusability of Packages using Software Integration Testing

R. Kamalraj1 , B.G. Geetha2 and V.Shyamaladevi3

1Lect/ Dept CSE , K.S.Rangasamy College of Technology Tiruchengode.

mailtokamalraj@yahoo.com
2 Prof / HOD Dept of CSE, K.S.Rangasamy College of Technology Tiruchengode.

3AP/ Dept of MCA , K.S.Rangasamy College of Technology Tiruchengode.

shyamala_msc@yahoo.com

ABSTRACT

The proposed project is for finding the characteristics of packages in software system are type of communication among packages, independent or dependent package, usability and reusability of a package. Testing phase is in different types are ‘Unit Testing’, ‘Black-Box’ and ‘White-Box’ testing, ‘Integration Testing’ and etc. From those testing types, the ‘Integration Testing’ takes important role to verify the connection among the modules to verify message passing between the connected packages. For sending the messages from one package to another package the interfaces are required. Verifying the called procedures with method prototype and the messages types, the number of data passed to the procedure is calculated. By checking the dataflow and control flow between modules the type of dependency can be defined as ‘Uni-direction’ or ‘Bi-direction’ communication on that package. To define the type of communication among the packages, ‘fan-in’ and ‘fan-out’ of the packages are used. The reusability of a package can be measured by using the ‘fan-out’ such as providing services to other packages. If some existing packages are matched with the requirement for new system, it may reduce the risks on developing new software system.

Keywords:
Software Testing, Reusability, Package Characteristics, Coupling, Cohesion, Stability metrics
1. Introduction:

The Software Development Life Cycle consists the 5 are ‘Requirement Analysis’, ’Design’, ‘Code Implementation’, ‘Testing’ and ‘Maintenance’. In those 5 phases the ‘Testing’ phase is playing important role for checking the products’ functionalities and their performance. This result leads the development team in a confident way to use the reusable packages to implement the further projects and upgrading the existing products.

Requirement Analysis: In this phase the ‘Software Analyst’ analyzes the problem statement to list out the functional and non-functional requirements and prepare SRS (Software Requirement Specification) document.

Design: The Software Designer will use the SRS document to design the architecture of the software systems as ‘High’ and ‘Low’ level design patterns of the software application.

Coding: The software development team will develop the source code of the system based on the design patterns are suggested by the designer.

Testing: This phase has different ways for checking the error while running product. This phase declares that whether the product will be acceptable one by the customer.

Maintenance: After released a software product, the user may be found some bug while using it. From that bugs list the development team will go for ‘Corrective’ and ‘Adaptive’ maintenance.

1.1 Importance of Software Testing

The Software Development Life Cycle (SDLC) consists of 5 phases such as ‘Requirement Analysis’, ’Design’, ‘Coding’, ‘Testing’ and ‘Maintenance’ phase. From that the ‘Testing’ phase is to verify the outputs of each previous phase such as SRS from Requirement Analysis, Software Architecture from Design Phase and Source code from the Coding phase.

From the ‘Effort Estimation’ techniques, the phases in SDLC require effort to complete their tasks is shown in the below chart diagram.

[image: image1.wmf]0

5

10

15

20

25

30

35

40

45

R

D

C

T

PHASES

EFFORT

EFFORT

R – Requirement Analysis

D – Design

C – Coding or Implementation

T – Testing

fig.1.1 Effort Estimation

The figure 1.1 shows that the first three phases in SDLC, each requires only 20% of effort from the total effort required for developing the project. But ‘Software Testing’ phase takes 40% of effort compare to other phases of SDLC, because verification and validation on functional and non-functional requirements will be done. To show the perfection of the product as requested by the customer it has to perform so many testing, such as ‘Black-Box’ and ‘White-Box’ testing, ‘Stress Testing’, ‘Integration Testing, ‘System Testing’, and ‘Acceptance Testing’. From those types the ‘Integration Testing’ is very important one to validate the communication in the form of data-flow and control-flow among packages. This will be testing the entire product with the SRS and the Software Architecture for verification and validation on required system functionalities.

1.2 What to test on Integration Testing?

The High-Level design pattern has to be verified for finding whether functionalities of one package is used by another package in the software system. Interface of every package in the software has to be tested to verify that whether it takes message from one end to other end properly.

 <<Interface>>

Figure 1.2 Interface between two packages

Interfaces take messages in the form of data and control from one package to other packages in the link. So the ‘Data-flow’ and ‘Control-flow’ in the interface of a package will be verified and validated. While testing interfaces of a package the ‘coupling’ and ‘cohesion’ of that package will be counted. The ‘Coupling’ defines the strength of a connection in the link between packages and ‘Cohesion’ defines how the elements of a package are related to one with another. From the ‘Coupling’ the modules can be categorized as independent or dependent. The ‘Cohesion’ is used to check the dependency among the elements such as classes and procedures in the package.

1.2.1 Fan-in and Fan-out

Before checking ‘Coupling’ and ‘Cohesion’, the Fan-in and Fan-out have to be calculated. The incoming requests to a package indicate the value of ‘Fan-in’ and providing the services to other packages specifies the value of ‘Fan-out’ of a module. But a huge value of ‘fan-out’ is not a desirable one to a package. Through those calculation whether a package has any super-ordinates or subordinates. This specifies that the Hierarchical-relationship among the packages.

1.2.2 Dependency

The ‘Dependency’ is one of the relationships between the modules or module elements.

For example:

 <<dependency>>

Figure 1.1.3
Uni-Direction

 Dependency Relationship

The above picture shows that the package ‘A’ depends upon the package ‘B’ to satisfy its tasks. If there is any element is changed on Package-B then it may affect the Package-A also. So the change management may be required for the modification on Package-A. The ‘Dependency’ among packages has different forms like ‘Functional or Data Dependency’, ‘Uni or Bi-direction’. Functional Dependency means that one package can be fired its element when the related package has completed its task. So, the functional dependency is expecting only the control from other package after executing its job. But the Data-Dependency of a package is depending on the data is assigned on its interface.

So the ‘Integration Testing’ verifies the dependency among two packages.

If one package is highly depending upon other packages then it cannot be usable one in further new products. And a package is not depending upon the services of other packages in the system then it may be play a very important role in software development.

2. The ways to find the Characteristics of a Package

 The following factors are required to check the characteristics of a package.

2.1 Coupling & Cohesion

First of all the fan-in can be found by using the interface of a package is used by other packages. The fan-out of a package will be measured by using the return values from the class elements of one package.

Then, the coupling can be found based on the data and control flow among packages. If one package is depending on the output of another package then it is strongly coupled. So the data-flow will be declared with the help of arguments in the interface of a package. The control-flow can be declared by the methods calling from one package element to other package element.

Strength of Coupling

C= ∑ dataflow and control flow a package

 ∑ - sum of the Fan-in and Fan-out of a

 package

The threshold value of coupling is 20.

So, if C>20 then it is ‘Tightly-Coupled’ module in the relationship.

 If C<20 then it is ‘Loosely-Coupled’ module.

The Cohesion of a package will be measured by the interdependency among package’s elements.

Cohesion of a package

 Coh = ∑ interdependency of package

 elements

 ∑ - sum of the interdependencies among

 package’s elements

Cohesion value range is [0,1]. If there is a logical relationship between the elements in a package, then the cohesion value is 1 else its value is 0.

The package elements are sub-packages, classes and procedures for giving the services of that package.

Stability of a package:

This design metric is indicating a package whether it is changeable or not.The reusability of a package is also depending upon the stability of a package.

Stability can be found by using ‘Import’ and ‘Export’ type of couplings of a package. The range of instability value is [0,1]. If instability is 0 then the package is stable. Else it is instable.

 This can be derived from the following steps:

Ev – the classes in the outside package depend upon a package like ‘Pi’.

Where

Ev – Export coupling value,

P – Package, i=1,2,3….. no.of packages

Iv – the classes in the package ‘Pi’ depend upon the outside package.

Iv – Import coupling value

Instability I = Iv / (Iv+Ev)

The stability of a package is also essential to define a package as reusable one or not. Stable packages only can be reusable by the development team to implement similar kind of works in current system development.

2.2 Size of a package

Package’s size is giving the performance of the software execution. So, Size of package will be calculated to find the total of KLOC is required for implementing the package in the system for running. The size which is fully based on the size of individual package elements.

So,

Packagei size = ∑ each element’s size in a

 package.

i=1, 2, 3….. Number of packages in the software system

∑ - sum of each element’s memory size in a package

Total Package Size = ∑ Packagei size

i=1, 2, 3….. Number of packages in the software system

∑ - sum of each package’s size in a software system

3. Results and Discussions

The proposed system will deliver the package elements such as classes and their logical relatinships among them. From that the Cohesion of package elements can be measured. After that the individual class code will be tested to check whether that package is depending upon other package. If it is then the type of Coupling metrics will be measured for stability of that package. Based on 'Instability' the 'Stability' metrics can be measured for a package. 'Stability' of the package can be used to deliver the reusable packages and their supportable packages.

4. Applications of proposed system

The proposed can be used in SDLC specifically in testing phase to check the errors on communication among packages, the data and control flow among packages and usability of a specific package in the system. The suggestions on reusability of packages the performance of previous phase outputs can be measured and it will helpful for the Software Project Management Team (SPM) for preparing performance analysis report.
* High-Level and Low Level Design patterns can be verified

* Usability of a Included package will be verified

 * Reusable packages can be defined

 * Helpful for SPM to reduce the Risks on system maintenance and creating plan for new projects

5. Conclusion

The proposed system is declared the reusability of packages through the dataflow and control flow among packages. It is also defined that type of dependency relationship and the type of communication among the packages. The reusability of packages can reduce the risks on different areas for delivering the product within proposed date of deliver the product to the customer.

References

[1]. Nunamaker, J.F., Jr.; Chen, M. “Software productivity: a framework of study and An approach to reusable components” System Sciences, 1989. Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference onVolume 2, Issue , 3-6 Jan 1989.

[2].Nam-Yong Lee; Litecky, C.R. “An empirical study of software reuse with special attention to Ada” Software Engineering, IEEE Transactions on Volume 23, Issue 9, Sep 1997 .
[3].Sebastian Spaeth ; Georg Von Krogh ; Matthias Stuermer “A Lightweight Model of Component Reuse: A Study of Software Packages in Debian GNU/Linux”.

[4].Sen-Tarng Lai; Chein-Chiao Yang “A software metric combination model for Software reuse” Software Engineering Conference, 1998. Proceedings. 1998 Asia PacificVolume, Issue , 2-4 Dec 1998 .

[5]. Nancy Bazilchuk and Parastoo Mohagheghi “The Advantages of Reused Software Components”. January 2005 R&D and TECHNOLOGY TRANSFER.

[6]. Jim-Min Lin, "Cross-Platform Software Reuse by Functional Integration Approach," compsac,pp.402, COMPSAC '97 - 21st International Computer oftware and Applications Conference, 1997.

Package-B

Package-A

Package-B

Package-A

Copy Right @CSE/IT/ECE/MCA-LVEC-2009

_32896552

