Proceedings of the International Conference , “Computational Systems and Communication Technology” Jan.,9,2009 - by Lord Venkateshwaraa Engineering College,

Efficient Scheduling Algorithm for Exchange of Data in Computational Grid

Mrs.P. Sumathi

Assistant Professor & Head

Department of Computer Applications

PSG College of Arts & Science

 Coimbatore - 641 014.Tamil Nadu,India.

sumathirajes@hotmail.com
Dr. M.Punithavalli
Director

Department of Computer Science
Sri Ramakrishna College of Arts &

 Science for Women

Coimbatore-641 006. TamilNadu, India.

mpunitha_srcw@yahoo.co.in
Abstract
Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. The execution of scientific workflows in grid environments requires many disputes due to the dynamic nature of such environments and the characteristics of scientific applications. We have proposed a computational e-governance framework for regulating the public requirements. The framework requires scheduling algorithms for allocating resources to application jobs in such a way that the users’ requirements are met. This work presents an algorithm that dynamically schedules tasks of workflows to grid sites based on the performance of these sites when running previous jobs from the same workflow. The algorithm captures the dynamic characteristics of grid environments without the need to check out the remote sites. It has been tested in a simulated grid environment. The experimental results show that the new scheduling algorithm can lead to significant performance gain in various applications.
Keywords: Grid computing, scheduling algorithm and heterogeneous system.
1. Introduction
Grid computing is becoming a popular way of providing high performance computing for many data intensive, scientific applications. The realm of grid computing is beyond parallel or distributed computing [27, 20, 15], requiring the management of a large number of heterogeneous resources with varying, distinct policies and controlled by multiple organizations. Grid computing allows a number of competitive and/or collaborative organizations to share mutual resources, including documents, software, computers, data and sensors, to seamlessly process data and computationally intensive applications [14].
Processing scientific workflows in a grid imposes many challenges due to the large number of jobs, file transfers and the storage needed to process them. The scheduling of a workflow focuses on mapping and managing the execution of tasks on shared resources that are not directly under the control of the workflow systems [28]. Thus, choosing the best strategy for a workflow execution in a grid is a challenging research area. Since a grid execution environment can be very dynamic, the static scheduling may produce poor schedules because by the time the task is ready to run the resource may be unavailable. Besides, it is not easy to accurately predict the execution time of all tasks. Another scheduling approach is to perform the assignment of tasks to resources dynamically as soon as the task is ready to be executed. In this case, if a resource is not available, it will not be selected to process the task. However, many sites can be available to run the task, and selecting the best one can be done according to many alternatives, like number of processors in the site, load balance or data availability.
This work presents an algorithm, which we name Hybrid-Core, which dynamically assigns jobs to grid sites. The algorithm adopts an observational approach and exploits the idea of scheduling a job to a site that will probably run it faster. The Hybrid-Core algorithm takes into account the dynamic characteristics of grid environments without the need to probe the remote sites. We compared the performance of the Hybrid-Core algorithm with different scheduling algorithms in a context of a workflow execution.
We conducted our experiments using the GridSim Simulator, which defines architecture to integrate data, programs, and the computations performed to produce data. This work extends the library of site selectors with a new Hybrid-Core site selector algorithm. Our results with experiments in a simulator suggest that the Hybrid-Core algorithm can increase performance up to 150% when compared to scheduling algorithms.
The rest of this paper is organized as follows. Section 2 discusses the related work that deals with grid scheduling. Section 3 describes the grid architecture for e-governance applications where the hybrid strategy was implemented while in section 4, we detail the Hybrid-Core scheduling algorithm. In section 5 we describe the experiments performed and in section 6 the experimental results are analyzed. Finally, section 7 concludes this work and points to future directions.

2. Related Work

A number of projects are investigating scheduling on distributed systems. They include Grid resource management and scheduling systems such as Condor [16, 11], Globus [4], Legion [25], AppLeS [2], NetSolve [3], and DISCWorld [13], which use system-centric scheduling strategies, and REXEC [5] and Spawn [24], which support computational economy-based resource management within cluster computing environments.

Finding a single best solution for mapping workflows onto Grid resources for all workflow applications is difficult since applications and Grid environments can have different characteristics [23]. There are many works in the literature addressing the benefits of the scheduling based on data locality in scenarios of data grids.. Ranganathan and Foster [21, 22] evaluate a set of scheduling and replication algorithms and the impact of network bandwidth, user access patterns and data placement in the performance of job executions. The evaluation was done in a simulation environment and the results showed that scheduling jobs to locations where the input data already exists, and asynchronously replicating popular data files across the Grid provides good results. Cameron et al. [6, 7] also measure the effects of various job scheduling and data replication strategies in a simulation environment. Their results show benefits of scheduling taking into account also the workload in the computing resources. Mohamed and Epema [18] propose an algorithm to place jobs on clusters close to the site where the input files reside. The algorithm assumes knowledge about the number of idle processors and the size of the input file for scheduling a job. The workloads studied in these works consist of a set of independent jobs submitted from different users spread over different sites. Our work differs by focusing on scheduling jobs belonging to a single application, which is a workflow, submitted from a single user.
Many researchers have studied scheduling strategies for mapping application workflows onto the grid. Ammar et al. [1] developed a framework to schedule a DAG in a grid environment that makes use of advance reservation of resources and also considers the availability knowledge about task execution time, transfer rates, and available processors to generate a schedule. Their simulation results show advantages of unified scheduling of tasks rather than scheduling each task separately. Mandal et al. [17] apply in-advance static scheduling to ensure that the key computational steps are executed on the right resources and large scale data movement is minimized. They use performance estimators to schedule workflow applications. Wieczoreket et al. [26] compare full graph scheduling and just-in-time strategies for scheduling of scientific workflow in a Grid environment with high availability rate and good control over the resources by the scheduler. Their results show best performance for full graph scheduling. Deelman et al. [8] can map the entire workflow to resources at once or portions of it. This mapping can be done before or during the workflow execution. Their algorithm prefers to schedule computation where data already exist. Additionally, users are able to specify their own scheduling algorithm or to choose between a random and a round robin schedule technique. Dumitrescu et al. [9] studied the performance execution of Blast jobs in Grid3 [10] according to several scheduling algorithms. In their experiments they used a framework that considered resource usage policies for scheduling the jobs. Their results showed that random and round robin algorithms achieved the best performance for medium and large workloads.

Triana [12] allows scientists to specify their workflows which can be scheduled directely by the user or by the GriLab Resource Management System. In this case, the scheduling is done according to requirements specified for each task. Taverna [19] provides a set of tools to define bioinformatics workflows based on a composition of web services, but not much detail is given about the scheduling of tasks. In our work, we also deal with the problem of scheduling jobs belonging to a single application, which is a workflow expressed as a hybrid strategy. Like in the previous workflow scheduling works, the goal of the scheduling is to minimize the overall job completion. In our algorithm, the planning scheme is completely dynamic and based on an observational approach. We do not consider performance estimation of grid resources, use of advance reservations or requirements specifications. The performance evaluation was conducted in a grid simulator.
3. Grid Architecture for E-governance Applications
A distributed Grid Architecture for e-governance applications is shown in Figure 1. The e-governance applications can be had from [23]. We generally refer to this architecture as GRAEA (Grid Architecture for e-governance applications).This architecture is generic enough to accommodate different models used for e-governance applications.

Figure 1: Grid Architecture for E-governance Applications (GRAEA)

The key components of the Grid include,
Grid User with Applications
Grid Resource Broker

Grid Middleware Services and Tools

Grid Service Providers

The two key players in market oriented computational Grids are resource providers and resource consumers. Grid Resource Broker that acts as a consumer’s representative or software agent. Both have their own expectations and strategies for being part of the Grid. In the Grid economy, resource consumers adopt the strategy of solving their problems within a required timeframe and budget. Resource providers adopt the strategy of obtaining best possible return on their investment. The resource owners try to maximize their resource utilization by offering a competitive service access cost in order to attract consumers. The have an option of choosing the providers that best meet their requirements. If resource providers have local users, they will try to recoup the best possible return on “idle/leftover” resources. In order to achieve this, the Grid systems need to offer tools and mechanisms that allow both resource providers and consumers to express their requirements. The Grid resource consumers interact with brokers to express their requirements such as the

budget that they are willing to invest for solving a given problem and a deadline, a timeframe by which they need results. They also need capability to trade between these two requirements and steer the computations accordingly. The GSPs need tools for expressing their pricing policies and mechanisms that help them to maximize the profit and resource utilization. Various economic models, ranging from commodity market to auction-based, can be adopted for resource trading in Grid computing environments.
4. Hybrid-Core Scheduling Algorithm

Scheduling workflow tasks in Grid environments is difficult because resource availability often changes during workflow execution. The main idea of the Hybrid-Core algorithm is to take advantage of this environment changes without needing to probe the remote sites.
In order to implement our Hybrid-Core algorithm, a few extensions were promoted in the system: we created a control database for logging the location and the status of the workflow jobs, and coded a site selector routine responsible for choosing the execution site for a job. The goal of the opportunistic site selector is

Figure 2: The Hybrid-Core Algorithm

to select a site to run a job based on the performance of each site when running previously jobs of the same workflow. The performance is measured by the ratio (number of ended jobs / number of submitted jobs) at each site, as shown in the algorithm from Figure 2. As long as no jobs have completed, the site selector performs a round robin distribution between the sites. In order to keep track of the submissions and completions of the workflow jobs, the site selector makes use of a control database.
5. Experiments
Many scientific applications can be characterized as having sets of jobs that have to be processed in several steps using the available resources. These clusters are composed of several resources with different Process Elements, independent resources communicate with the preceding and succeeding resources in order to accomplish a job.
We defined a Hybrid workflow to evaluate a set of scheduling strategies in this experiment. There is job J1 acquires the Corporation Server, then after completing the Job, J2 acquires the Corporation Server. Then the result is passed to the EB Server, the EB server in-turn executes the job from DB1 and sends the result to the CWSS Server. The CWSS Server then executes the job from DB2 and stores it in a Dataset DB3.

Figure 3: The Hybrid workflow

Currently, the system provides three choices for the planners: Round-Robin, Random and Weighted-Linear-Random. We evaluated the Hybrid-Core algorithm against the Weighted-Linear-Random, Round-Robin, Last-Recent-Used and Data- Present algorithms. The overall ideas of these algorithms are:

1. Weighted-Linear-Random (WLR)- The execution of jobs are selected randomly but resources with more processors receive more jobs to process.

2. Round-Robin - Jobs are sent to resources in a round-robin way. Thus, the number of jobs assigned to each resource is the same.

3. Last-Recently-Used (LRU) - The job corresponds to the resources where the last job ended.

4. Data-Present - A job is sent to a resource with the most files that it needs. If more than one job qualifies then a random one is chosen.

5. Hybrid-Core - The execution site is selected according to the performance of each resource. This performance is measured by dividing the number of concluded jobs by the number of submitted jobs at each resource. While there are no jobs concluded, a round-robin scheduling is performed.

	Servers
	Processors

	EB Server
	63

	CWSS Server
	153

	Corporation Server
	124

Table 1: Resources available in GRID

We conducted the experiments using three servers from the Open Science Grid. Table 1 shows a snapshot of the total resources available and the total PEs in each resource.
Table 2 shows the average execution time in seconds for data transfer and execution according to the type of the job.

	
	DB1
	DB2
	DB3

	Number
	100
	100
	100

	Transfer time
	17
	27
	13

	Execution time
	300
	120
	60

Table 2: Average time for data transfer
6. Results and Discussion
We executed the workflow several times for each scheduling strategy, totalizing 20,000 job executions. As can be noted, the performance of the five algorithms is almost the same during the execution of the first hundred jobs of the workflow. Last-Recently-Used and Round-Robin algorithms adopt the same scheduling strategy while there is no job concluded. The Data-Present algorithm uses a strategy similar to Weighted-Linear-Random.

The Hybrid-Core algorithm improves the performance simply by dividing the entire process into two parts. One for the resources with various PE's and the other for the job. After completion of every job, the available resources are updated and sorted as a group.

Any job given to the resources by any of the department in E-Governance for a water connection will be queued in a list. Once the job arrives they are estimated for both the size and waiting time of the job, so that a lengthy job will not suffer waiting for a long time. Sort the jobs and assign priority and assign the suitable resources. If any of the e-governance jobs takes time beyond the specified time, the job is sent back to the queue and assigning the remaining time and the waiting time as zero.

If any of the resource has jobs assigned, non-dispatched will be moved to unassigned-Jobs-List. This helps in updating the whole schedule based on the latest resource availability information and repeat the steps (a) to (c) for the jobs in unassigned-Jobs-List until all the jobs are done.

This algorithm implemented for water-connection for a municipal corporation or a municipality simply is optimal from other algorithms because, this algorithm does not run after resources after the arrival of the job, instead as cited above it calculates and updates the available resources, so once a job arrives the only job left is to assign the job to an apt resource. This drastically reduces the time for a job to be executed. The Last-Recently-Used algorithm may not present a good performance it has to wait a long period of time in the remote queue. When this happens, the next job in the workflow will probably show the same performance. This kind of problem is avoided by the Hybrid-Core.

Round-Robin provides a good load balance but since the performance varies at different load, scheduling the same number of jobs is not beneficial. Weighted-Linear-Random does not show a good performance because scheduling more jobs with more resources does not guarantee better results since jobs can have to wait in the remote queues. It seems that this kind of strategy is more indicated to grid environment where resources can be reserved for the entire execution of the workflow.

[image: image1.emf]Basic Statistics

0

100

200

300

400

500

Hybrid-

Core

LRU WLR DPT RR

Algorithms

Time (in minutes)

Avg

Med

Max

Min

 Figure 4: Basic Execution statistics

[image: image2.emf]Speed Up

0

5

10

15

20

25

30

Hybrid-Core LRU WLR DPT RR

Algorithms

Instructions per second (in KB)

 Figure 5: Speedup by algorithms

Figure 4 shows a set of few basic statistics about the workflow running. As can be observed, the minimum execution time is almost the same for all algorithms. However, the most usual behavior is to have those algorithms presenting different performance as the workflow is being processed. Consequently, the median, average and maximum execution time differ according to the execution strategy.

Figure 5 shows the speedup of the five algorithms. The execution of the workflow with the Hybrid-Core algorithm was approximately thirty times faster than running in a single machine. The speedup achieved by the Hybrid-Core algorithm was more than 150% higher than the other strategies.
7. Conclusions and Future Work

We have proposed a new Hybrid-Core algorithm for scheduling jobs in grid environments, and compared its performance with other algorithms. In particular, we analyzed the performance with a very common workflow pattern, a pipeline of programs. The results showed that the Hybrid-Core algorithm provided superior performance when compared to other four algorithms for scheduling workflows jobs. The performance improvement is achieved as a consequence of the observational approach implemented by the algorithm. This approach exploits the idea of scheduling jobs for sites that are presenting good response times and to cancel jobs that are not being executed after a period of time. The algorithm is not aware of sites capabilities and does not need to collect data from remote sites being easy to implement and can be used by other workflow engines. We intend to perform more comparative experiments with other scheduling algorithms to confirm the efficiency of the Hybrid-Core algorithm.

Acknowledgements

The authors wish to thank our management, Secretary and Principal for their constant encouragement and active support.

References

[1] Ammar H. Alhusaini, Viktor K. Prasanna, C.S. Raghavendra. "A Unified Resource Scheduling Framework for Heterogeneous Computing Environments," hcw, p. 156, Eighth Heterogeneous Computing Workshop, 1999.

[2] Berman F, Wolski R. The AppLeS project: A status report. Proceedings of the 8th NEC Research Symposium, Germany, May 1997. Elsevier Press: Amsterdam, The Netherlands, 1997.

[3] Casanova H, Kim M, Plank J, Dongarra J. Adaptive scheduling for task farming with Grid middleware. The International Journal of High Performance Computing 1999; 13(3).

[4] Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Smith W, Tuecke S. A resource management architecture for metacomputing systems. Proceedings of the IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing. Springer, 1998.

[5] Chun B, Culler D. User-centric performance analysis of market-based cluster batch schedulers. Proceedings of

the 2nd IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany, May 2002. CERN: Geneva, Switzerland, 2002.

[6] D.G. Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C., Stockinger K., Zini, F., Evaluating Scheduling and Replica Optimisation Strategies in OptorSim, in Proc. Of 4th International Workshop on Grid Computing (Grid2003). Phoenix, USA, November 2003.

[7] D.G. Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C., Stockinger K., Zini, F., Evaluation of an Economic-Based File Replication Strategy for a Data Grid, in Int. Workshop on Agent Based Cluster and Grid Computing at Int. Symposium on Cluster Computing and the Grid (CCGrid2003), Tokyo, Japan, May 2003.

[8] Deelman,E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K., Livny, M., Across Grids Conference 2004, Nicosia, Cyprus 7. Deelman, E., Blythe, J., Gil, Y., Kesselman,C., Workflow Management in GriPhyn, The Grid Resource Management, Netherlands 2003.

[9]Dumitrescu, C, Foster, I., Experiences in Running Workloads over Grid3, GCC 2005, LNCS 3795, pp.274-286, 2005.

[10] Foster, I. et al.,The Grid2003 Production Grid: Principles and Practice, in 13th International Symposium on High Performance Distributed Computing, 2004.

[11] Frey J, Tannenbaum T, Foster I, Livny M, Tuecke S. Condor-G: A computation management agent for multi-institutional Grids. Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10), San Francisco, CA, 7–9 August 2001.

[12]Goodale T., Taylor I., Wang I., "Integrating Cactus Simulations within Triana Workflows", In: Proceedings of 13th Annual Mardi Gras Conference – Frontiers of Grid Applications and Technologies, Louisiana State University, pp. 47-53, February, 2005.

[13] Hawick K et al. DISCWorld: An environment for service-based metacomputing. Future Generation Computing Systems 1999; 15.

[14] Ian Foster, Carl Kesselman, Steve Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations, International Journal of Supercomputer Applications, 2001.

[15] Kwok. Y., Ahmad, I. Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors. ACM Computing Surveys, 31(4), December 1999.

[16] Litzkow M, Livny M, Mutka M. Condor—a hunter of idle workstations. Proceedings of the 8th International Conference of Distributed Computing Systems, June 1988. Editrice Compositori/Press: Bologna, Italy, 1988.

[17] Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Crummey, J., Liu, B., Johnsson, L., Scheduling Strategies for Mapping Application Workflows onto the Grid, The 14th IEEE International Symposium on High-Performance Distributed Computing (HPDC- 14), Research Triangle Park, NC, USA, July 2005.

[18] Mohamed, H.H., Epema, D.H.J., An Evaluation of the Close-to-Files Processor and Data Co-Allocation Policy in Multiclusters, IEEE International Conference on Cluster Computing, San Diego, USA, September 2004.

[19] Oinn, T., Addis, M., Ferris, J. et al, 2004, "Taverna: a Tool for the Composition and Enactment of Bioinformatis Workflow", In: BIOINFORMATICS, vol. 20, no 17 2004, pp. 3045-3054, Oxford University Press.

[20] S. Ranka, M. Kaddoura, A. Wang, and G. C. Fox.Heterogeneous Computing on Scalable Heterogeneous Systems, Proceedings of Supercomputing 93, pp. 763--764.

[21]. Ranganathan,K., Foster,I., Simulation Studies of Computation and Data Scheduling Algorithms for Data Grids, in Journal of Grid Computing, V1(1) 2003.

[22] Ranganathan,K., Foster,I., Computation Scheduling and Data Replication Algorithms for Data Grids, 'Grid Resource Management: State of the Art and Future Trends', J. Nabrzyski, J. Schopf, and J. Weglarz, eds. Kluwer Academic Publishers, 2003.

[23] Sumathi P, Punithavalli M, “Constructing A Grid Simulation for E-Governance Applications Using GridSim”, International Journal of Computer Science, Science Publications, vol 4, no 9 2008, New York, USA.

[24] Waldspurger C, Hogg T, Huberman B, Kephart J, Stornetta W. Spawn: A distributed computational economy. IEEE Transactions on Software Engineering, February 1992.
[25] Weissman J, Grimshaw A. A federated model for scheduling in wide-area systems. Proceedings of the Fifth IEEE

International Symposium on High Performance Distributed Computing (HPDC). Sage Publications: Thousand Oaks, CA, 1996.

[26] Wieczorek, M., Prodan, R.,Fahringer,T., Scheduling of Scientific Workflows in the ASKALON Grid Environment, SIGMOD Record, Vol. 34, No.3, September 2005.

[27] Yang, T., Gerasoulis, A. DSC: Scheduling parallel tasks on an unbounded number of processors. IEEE Transaction on Parallel and Distributed Systems, 5(9), 951-967, 1994.

[28]. Yu,J., Buyya, R., A Taxonomy of Scientific Workflow Systems for Grid Computing, SIGMOD Record, Vol.34, No.3, September 2005.
Scheduling Algorithms

DB

DB

DB

Corporation Server

CWSS Server

EB Server

Meta Scheduler

Grid Node 1

Grid Node N

Grid Service Providers

Grid Middleware Services

Grid Resource

Broker

Grid

Consumer

Applications

Application Queue

Intermediate Queue

Process Server

……..

Storage

JobExec

Qos

Secure

Info?

Sign-On

Algorithm for every Resource:

1. After every job completion, each cluster has to update the available resources Grid

 information services and store the information for easy retrieval.

2. Create resource groups containing resources with the same processing elements (PEs).

3. SORT the resource groups with the increasing order of PEs.

Algorithm for Every Job:

1. INITIATE: If the user supplies a job, then determine the absolute deadline of the job

2. SCHEDULING: Repeat while there exists unprocessed jobs and the current time and

 processing expenses are within the deadline.

 a. For each job, predict and establish the job consumption rate with the waiting time

 b. SORT the jobs by increasing size and waiting time of each job.

 c. If the Estimated time is elapsed, then the job is assigned back to the queue

 estimating the remaining time again with the waiting time as zero.

 d. If any of the resource has jobs assigned to it in the previous scheduling event, but

 not dispatched to the resource for execution and there is variation in resource.

 availability, then move appropriate number of jobs to the Unassigned-Jobs-List.

 This helps in updating the whole schedule based on the latest resource availability.

 information and repeat the steps a to c for the jobs in Unassigned-Jobs-List until all

 the jobs are done.

3. DISPATCHER: Repeat the following steps for each resource if it has jobs to be dispatched:

• Identify the number of jobs that can be submitted without overloading the resource. Our default policy is to dispatch jobs as long as the number of user jobs deployed (active or in queue) is less than the number of PEs (Processing Elements, i.e.CPUs) in the resource.

DB3

DB1

DB2

J2

J1

CWSS Server

EB Server

Corporation Server

PAGE
8
Copy Right @CSE/IT/ECE/MCA-LVEC-2009

