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Abstract


In this paper a low bit rate embedded image coding scheme utilizes a virtual set partitioning in hierarchical trees(SPHIT) algorithm which has proved so successful in still images. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of image wavelet transform the image coding results calculated from actual file sizes and images reconstructed by the decoding algorithm. This SPHIT along with energy efficient wavelet transform provide the efficient image codec. This new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance. It is efficient compression method compare with JPEG. 


The well known wavelet based image coding techniques, such as the set partitioning in hierarchical trees (SPHIT) is designed for colour images. In this paper, we discuss a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than the extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex  methods. In addition, the new coding and decoding procedures are extremely fast, and  they can be made even faster, with only small loss in  performance, by omitting entropy coding of the bit stream by arithmetic code.

I. INTRODUCTION

IMAGE compression techniques, especially nonreversible or lossy ones, have been known to grow computationally more complex as they grow more efficient, confirming the tenets of source coding theorems in an  information theory that a code for a (stationary) source approaches optimality in the limit of infinite computation (source length).  Notwithstanding, the image coding technique that using SPHIT algorithm on wavelet  transformed coefficient of images, interrupted the simultaneous progression of efficiency and complexity. This technique not only was competitive in performance with the most complex techniques, but was extremely fast in execution and produced an embedded bit stream. With an embedded bit stream, the reception of code bits can be stopped at any point and the image can be decompressed and reconstructed. Following that significant work, we developed an alternative exposition of the underlying principles of the  EZW technique and presented an extension that achieved even better results

In this work, crucial parts of the coding process-the way subsets of coefficients are partitioned and how the significance information is conveyed-are fundamentally different from the

aforementioned works. In the previous works, arithmetic coding of the bit streams was essential 
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to compress the ordering information as conveyed by the results of the significance tests. Here, the subset partitioning is so effective and the significance information so compact that even binary uncoded transmission achieves about the same or better performance than in these previous works. Moreover, the utilization of arithmetic coding can reduce the mean squared error or increase the peak signal-to-noise ratio (PSNR) by 0.3-0.6 dB for the same rate or compressed file size and achieve results which are equal to or superior to any previously  reported, regardless of complexity. Execution times are also reported to indicate the rapid speed of the encoding and decoding algorithms. The transmitted code or compressed image file is completely embedded, so that a single file for an image at a given code rate can be truncated at various points and decoded to give a series of reconstructed images at lower rates. Previous versions [l], [6] could not give their best performance with a single embedded file and required, for each rate, the optimization of a certain parameter. The new method solves this problem by changing the transmission priority and yields, with one embedded file, its top performance for all rates. The encoding algorithms can be stopped at any compressed

file size or let run until the compressed file is a representation of a nearly lossless image. We say nearly lossless because the compression may not be reversible, as the wavelet transform filters, chosen for lossy coding, have noninteger tap weights and produce noninteger transform coefficients, which are truncated to finite precision. For perfectly reversible compression,

one must use an integer multiresolution transform, such as the S+P transform introduced in [14], which yields excellent reversible compression results when used with the new extended EZW techniques.

This paper is organized as follows. The next section, Section 11, describes an embedded coding or progressive transmission scheme that prioritizes the code bits according to their reduction in distortion. Section 111 explains the

principles of partial ordering by coefficient magnitude and ordered bit plane transmission, which suggest a basis for an efficient coding method. The set partitioning sorting procedure and spatial orientation trees (called zerotrees

previously) are detailed in Sections IV and V, respectively. Using the principles set forth in the previous sections, the coding and decoding algorithms are fully described in Section VI. In Section VII, rate, distortion, and execution

time results are reported on the operation of the coding algorithm on test images and the decoding algorithm on the resultant compressed files. The figures on rate are calculated from actual compressed file sizes and on mean

squared error or PSNR from the reconstructed images given by the decoding algorithm. Some reconstmcted images are also displayed. These results are put into perspective by comparison to previous work. The conclusion of the paper

is in Section VIII.

II. WAVELET THEORY 

A. Trends and Anomalies

One of the oldest problems in statistics and signal processing is how to choose the size of an analysis window, block size, or record length of data so that statistics computed within that window provide good models of the signal

behavior within that window. The choice of an analysis window involves trading the ability to analyze “anomalies, ” or signal behavior that is more localized in the time or space domain and tends to be wide band in the frequency domain, from “trends,” or signal behavior that is more localized in frequency but persists over a large

number of lags in the time domain. To model data as being generated by random processes so that computed statistics become meaningful, stationary and ergodic assumptions are usually required which tend to obscure the contribution

of anomalies. 

The main contribution of wavelet theory and multiresolution analysis is that it provides an elegant framework in which both anomalies and trends can be analyzed on an equal footing.  Wavelets provide a signal  representation in which some of the coefficients represent long data lags corresponding to a narrow band, low frequency range, and some of the coeficients represent short data lags corresponding to a wide band, high frequency range. Using the concept of scale, data representing a continuous tradeoff

between time (or space in the case of images) and frequency is available.

For an introduction to the theory behind wavelets and multiresolution analysis, the reader is referred to several excellent tutorials on the subject [6], 171, [ 171, [ 181, [20],

1261, 1271.

B. Relevance to Image Coding

In image processing, most of the image area typically represents spatial “trends,” or areas of high statistical spatial correlation. However “anomalies,” such as edges or object boundaries, take on a perceptual significance that is far greater than their numerical energy contribution to an image. Traditional transform coders, such as those using the DCT, decompose images into a representation in which each coefficient corresponds to a fixed size spatial area and a fixed frequency bandwidth, where the bandwidth

and spatial area are effectively the same for all coefficients in the representation. Edge  information tends to disperse so that many non-zero coefficients are required to represent edges represent relatively insignificant energy with edges with good fidelity. However, since the respect to the entire image, traditional transform coders, such as those using the DCT, have been fairly successful at medium and high bit rates. At extremely low bit rates, however, traditional transform coding techniques, such as JPEG [30], tend to allocate too many bits to the “trends,” and have few bits left over to represent “anomalies.” As a result, blocking artifacts often result.

Wavelet techniques show promise at extremely low bit rates because trends,  anomalies, and information at all “scales” in between are available. A major difficulty is

that fine detail coefficients representing possible anomalies constitute the largest number of coefficients, and therefore, to make effective use of the multiresolution representation, much of the information is contained in representing the position of those few coefficients corresponding

to significant anomalies.

The techniques of this paper allow coders to effectively use the power of multiresolution representations by efficiently

representing the positions of the wavelet coefficients representing significant anomalies.

C. A Discrete Wavelet Transform

The discrete wavelet transform used in this paper is identical to a hierarchical subband system, where the subbands are logarithmically spaced in frequency and represent an octave-band decomposition. To begin the ecomposition,

the image is divided into four subbands and

critically subsampled as shown in Fig. 1. Each coefficient represents a spatial area  corresponding to approximately a 2 X 2 area of the original image. The low frequencies represent a bandwidth approximately corresponding to 0 <( w (< (/2. whereas the high frequencies represent the band from 

(/ 2<( w ( < (. The four subbands arise from

separable application of vertical and horizontal filters. The subbands labeled LH1 , HL1, and H1H, represent the finest scale wavelet coefficients. To obtain the next coarser scale

of wavelet coefficients, the subband LL1, is further decomposed and critically sampled as shown in Fig. 2. The process continues until some final scale is reached. Note that for each coarser scale, the coefficients represent a larger

spatial area of the image but a narrower band of frequencies. At each scale, there are three subbands; the remaining lowest frequency subband is a representation of the information at 


Fig. 1. First stage of a discrete wavelet transform: The image is divided into four subbands using separable filters. Each coefficient represents a spatial area corresponding to approximately a 2 X 2 area of the original picture. The low frequencies represent a bandwidth approximately corresponding to 0 <( w (< (/2, whereas the high frequencies represent the band from(/ 2<( w ( < (. The four subbands arise from separable application

of vertical and horizontal filters
all coarser scales. The issues involved in the design of the filters for the type of subband decomposition described above have been discussed by many authors and are not treated in this paper. Interested readers should consult [l], 161, 1321, [35], in addition to references found in the bibliographies of the tutorial papers cited above


Fig. 2. A two-scale wavelet decomposition: The image is divided into four subbands using separable filters. Each coefficient in the subbands Ll2,, LH2,, HL2 and HH2 represents a spatial area corresponding to approximately a 4

x 4 area of the original picture. The low frequencies at this scale represent a bandwidth approximately corresponding to 0 <( w (< (/4whereas the high frequencies represent the band from 0 <( w (< (/2. 

It is a matter of terminology to distinguish between a transform and a subband system as they are two ways of describing the same set of numerical operations from differing points of view. Let x be a column vector whose elements represent a scanning of the image pixels, let X be a column vector whose elements are the array of coefficients resulting from the wavelet transform or subband decomposition applied to x. From the transform point of view, X represents a linear transformation of x represented by the matrix W, i.e.,

X = Wx. 
Although not actually computed this way, the effective filters that generate the subband signals from the original signal form basis functions for the transformation, i.e., the rows of W. Different coefficients in the same subband represent the projection of the entire image onto translates

of a prototype subband filter, since from the subband point of view, they are simply regularly spaced different outputs of a convolution  between the image and a subband filter. Thus, the basis functions for each coefficient in a given

subband are simply translates of one another.

In subband coding systems [32], the coefficients from a given subband are usually grouped together for the purposes of designing quantizers and coders. Such a grouping suggests that statistics computed from a subband are in some sense representative of the samples in that subband. However this statistical grouping once again implicitly de-emphasizes the outliers, which tend to represent the most significant anomalies or edges. In this paper, the term “wavelet transform” is used because each wavelet coefficient is individually and deterministically compared to the same set of thresholds for the purpose of measuring significance. Thus, each coefficient is treated

as a distinct, potentially important piece of data regardless of its scale, and no statistics for a whole subband are used in any form. The result is that the small number of “deterministically’ ’ significant fine scale coefficients are not obscured because of their “statistical”  insignificance. 

The filters used to compute the discrete wavelet transform in the coding experiments described in this paper are based on the 9-tap symmetric quadrature mirror filters (QMF) whose coefficients are given in [ 11. This transformation has also been called a QMF-pyramid. These filters were chosen because in addition to their good localization properties, their symmetry allows for simple edge  treatments, and they produce good results empirically. Additionally, using properly scaled coefficients, the transformation matrix for a discrete wavelet transform obtained using these filters is so close to unitary that it can be treated as unitary for the purpose of lossy compression.

Since unitary transforms preserve L2 norms, it makes sense from a numerical standpoint to compare all of the resulting transform coefficients to the same thresholds to assess significance. 

III. SET PARTITIONING SORTING ALGORITHM

One of the main features of the proposed coding method is that the ordering data is not explicitly transmitted. Instead, it is based on the fact that the execution path of any algorithm is defined by the results of the comparisons on its branching points. So, if the encoder and decoder have the same sorting

algorithm, then the decoder can duplicate the encoder’s execution path if it receives the results of the magnitude comparisons, and the ordering information can be recovered from the execution path. 

One important fact used in the design of the sorting algorithm is that we do not need to sort all coefficients. Actually, we need an algorithm that simply selects the coefficients such that 2n(=(Ci,j(< 2n+1, with n decremented in each pass. Given n, if (C i,j((2n  then we say that a coefficient is significant; otherwise it is called insignficant.

The sorting algorithm divides the set of pixels into partitioning subsets (m and performs the magnitude test 

   Max       ({C i,j(}(2n  ? 

(i.j)((m
If thle decoder receives a “no’’ to that answer (the subset is insignificant), then it knows that all coefficients in (m are insignificant. If the answer is “yes” (the subset is significant), then a certain rule shared by the encoder and the decoder is used to partition (m into new subsets (m,t , and the significance test is then applied to the new subsets. This set division process continues until the magnitude test is done to

all single coordinate significant subsets in order to identify each significant coefficient.

To reduce the number of magnitude comparisons (message bits) we define a set partitioning rule that uses an expected ordering in the hierarchy defined by the subband pyramid. The objective is to create new partitions such that subsets expected to be insignificant contain a large number of elements, and subsets expected to be significant contain only one element.

To make clear the relationship between magnitude comparisons and message bits, we use the function

Sn(T) =1,  Max 
({C i,j(}(2n,

                (i.j)((
            0,  otherwise
to indicate the significance of a set of coordinates T. To simplify the notation of single pixel sets, we write Sn({ (i, j ) } )
as Sn(i, j).

IV. SPATIAL ORIENTATION TREES

Normally, most of an image’s energy is concentrated in the low frequency components. Consequently, the variance decreases as we move from the highest to the lowest levels

of the subband pyramid. Furthermore, it has been observed that there is a spatial self-similarity between subbands, and the coefficients are expected to be better magnitude-ordered

if we move downward in the pyramid following the same spatial orientation. For instance, large low-activity areas are expected to be identified in the highest levels of the pyramid, and they are replicated in the lower levels at the same spatial

locations.

A tree structure, called spatial orientation tree, naturally defines the spatial relationship on the hierarchical pyramid. Fig. 2 shows how our spatial orientation tree is defined in a pyramid constructed with recursive four-subband splitting. Each node of the tree corresponds to a pixel and is identified by the pixel coordinate. Its direct descendants (offspring) correspond to the pixels of the same spatial orientation in the next finer level of the pyramid. The tree is defined in such a way that each node has either no offspring (the leaves) or four offspring, which always form a group of 2 x 2 adjacent pixels. In Fig., the arrows are oriented from the parent node to its four offspring. The pixels in the highest level of the pyramid are the tree roots and are also grouped in 2 x 2 adjacent pixels. However, their offspring branching rule is different, and in each group, one of them (indicated by the star in Fig.) has no descendants.

The following sets of coordinates are used to present the new coding method:

· O(i, j ) : set of coordinates of all offspring of  node (i, j);

· D(i, j ) : set of coordinates of all descendants  of  the node (i, j )
· (: set of coordinates of all spatial orientation  tree roots , (nodes in the highest pyramid level);

· L(i, j ) = D(i, j ) - O(i, j ) .

Fig. 2. Examples of parent-offspring dependencies in the spatial-orientation tree

For instance, except at the highest and lowest pyramid levels, we have

O(i, j ) ={(2i, 2j), (2i, 2j + 1); (2i + 1, 2 j ) ,

(2i + 1, 2 j + 1)}. 

We use parts of the spatial orientation trees as the partitioning subsets in the sorting algorithm. The set partitioning rules are simply the following.

1) The initial partition is formed with the sets 

    {(i,j )} and D(i,j ) , for all (i, j ) ( (
2) If D(i,j ) is significant, then it is partitioned   

    into L(i, j ) plus the four single-element sets  

    with ( k , l ) (O(i, j ) .

3) If L(i, j ) is significant, then it is partitioned 

    into the four sets D(k,l ) , with ( k ,lI )( O(i, j ) 


Fig3: Examples of parent-offspring dependencies in the spatial-orientation tree.

V. CODING ALGORITHM

Since the order in which the subsets are tested for significance is important, in a practical implementation the significance information is stored in three ordered lists, called list of insignificant sets (LIS), list of insignificant pixels (LIP), and list of significant pixels (LSP). In all lists each entry is identified by a coordinate (i, j ) , which in the LIP and LSP represents individual pixels, and in the LIS represents either

the set D(i, j ) or L(i, j ) . To differentiate between them, we say that a LIS entry is of type A if it represents D{i; j), and of type B if it represents L(i, j ) .

 During the sorting pass (see Algorithm I), the pixels in the LIP-which were insignificant in the previous pass-are tested, and those that become significant are moved to the LSP. Similarly, sets are sequentially evaluated following the LIS order, and when a set is found to be significant it is removed from the list and partitioned. The new subsets with more than one element are added back to the LIS, while the

single-coordinate sets are added to the end of the LIP or the LSP, depending whether they are insignificant or significant, respectively. The LSP contains the coordinates of the pixels

that are visited in the refinement pass.

Below we present the new encoding algorithm in its entirety. It is essentially equal to Algorithm I, but uses the set partitioning approach in its sorting pass.

Algorithm 11:

1) Initialization: output n = [log2(max(i, j ) {(c i,j)(})]; set the LSP as an empty list, and add the coordinates (i, j ) ( ( to the LIP, and only those with descendants also to the LIS, as type A entries.

2) Sorting Pass:

2.1) for each entry (2, J ) in the LIP do:

2.1.1) output Sn(i, j ) ;

2.1.2) if Sn,(i, j ) = 1 then move (i, j ) to the LSP and output the sign of c i,j;

2.2) for each entry (i, j) in the LIS do:

2.2.1) if the entry is of type A then

· output Sn(D(i,j ))

· if Sn(D(i,j ))= 1 then;

* for each ( k , l ) (O(i, j ) do:

* output Sn,(k,l );

* if Sn,(k,l ) = 1 then add ( k ,l ) to the    

    LSP and output the sign of c k,lj
* if Sn,(k,l ) = 0 then add ( k , I ) to the  

   end of the LIP;

        * if L(i, j ) # 0 then move (i, j ) to the

          end of the LIS, as an entry of type B,

          and go to Step 2.2.2); otherwise, remove

          entry (i, j ) from the LIS;

2.2.2) if the entry is of type B then

· output Sn(L(i,j ))

· if Sn(L(i,j ))= 1 then

* add each ( k , I ) (O(i, j ) to the end of the     

    LIS as an entry of type A;

* remove (i, j) from the LIS.

3) Refinement Pass: for each entry (i, j ) in the LSP, except those included in the last sorting pass (i.e., with same n), output the nth most significant bit of (c (i,j)(;
4) Quantization-Step Update: decrement n by 1 and go to Step 2.

One important characteristic of the algorithm is that the entries added to the end of the LIS in Step 2.2) are evaluated before that same sorting pass ends. So, when we say “for each entry in the LIS” we also mean those that are being added to its end. With Algorithm 11, the rate can be precisely controlled because

the transmitted information is formed of single bits. The encoder can also use the property in (4) to estimate the progressive distortion reduction and stop at a desired distortion value. 

Note that in Algorithm 11, all branching conditions based on the significance data Sn-which can only be calculated with the knowledge of c i,j  - are output by the encoder. Thus, to obtain the desired decoder’s algorithm, which duplicates the encoder’s execution path as it sorts the significant coefficients, we simply have to replace the words output by input in AlgorithmII Comparing the algorithm above to Algorithm I, we can see that the ordering information ( ( k ) is recovered when the coordinates of the significant coefficient  are added to the end of the LSP; that is, the coefficients pointed by the coordinates in the LSP are sorted as in (5). But note that whenever the decoder inputs data, its three control lists (LIS, LIP, and LSP) are identical to the ones used by the encoder at the moment it outputs that data, which means that the decoder

indeed recovers the ordering from the execution path. It is easy to see that with this scheme, coding and decoding have the same computational complexity.

An additional task done by decoder is to update the reconstructed image. For the value of n when a coordinate is moved to the LSP, it is known that 2n <=(c (i,j)(< 2n+1. So, the decoder uses that information, plus the sign bit that is  input just after the insertion in the LSP, to set c’i,j= +or –1.5 X 2n . Similarly, during the refinement pass, the decoder adds or subtracts 

2n-l to c’i,j.  when it inputs the bits of the binary representation of(c (i,j)(. In this manner, the distortion gradually decreases during both the sorting and refinement passes.

As with any other coding method, the efficiency of Algorithm I1 can be improved by entropy-coding its output, but at the expense of a larger coding/decoding time. Practical experiments have shown that normally there is little to be gained by entropy-coding the coefficient signs or the bits put out during the refinement pass. On the other hand, the significance values are not equally probable,

and there is a statistical dependence between Sn(i, j ) and Sn[D(i, j ) ] and also between the significance of adjacent  pixels. 

We exploited this dependence using the adaptive arithmetic coding algorithm of Written et al. [7]. To increase the coding efficiency, groups of 2 x 2 coordinates were kept together in

the lists, and their significance values were coded as a single symbol by the arithmetic coding algorithm. Since the decoder only needs to know the transition from insignificant to significant (the inverse is impossible), the  amount of information that needs to be coded changes according to the number m of insignificant pixels in that group, and in each case it can be conveyed by an entropy-coding alphabet with 2m symbols. With arithmetic coding it is straightforward to use several adaptive models [7], each with 2m symbols, m((1, 2, 3, 4}, to code the information in a group of four pixels.

By coding the significance information together, the average bit rate corresponds to an mth order entropy. At the same time, by using different models for the different number of

insignificant pixels, each adaptive model contains probabilities conditioned to the fact that a certain number of adjacent pixels are  significant or insignificant. This way the dependence between magnitudes of adjacent pixels is fully exploited. The scheme above was also used to code the significance of trees

rooted in groups of 2 x 2 pixels.

With arithmetic entropy-coding it is still possible to produce a coded file with the exact code rate and possibly a few unused bits to pad the file to the desired size.

VI. NUMERICAL RESULTS

After reconstructing the compressed image using SPHIT the PSNR and compression ratio are calculated using the given formula.


W and h are the width and height of the image
O is the original image data

C is the compressed image data

MAX is the maximum value that a pixel can have, 255.

Bit-stream c of length ||c||.
N1 *N2 are the rows and columns


VII. SUMMARY AND CONCLUSIONS

We have presented an algorithm that operates through set partitioning in hierarchical trees (SPIHT) and accomplishes completely embedded coding. This SPIHT algorithm uses the principles of partial ordering by magnitude, set partitioning by significance of magnitudes with respect to a sequence of octavely decreasing thresholds, bordered bit plane transmission, and self-similarity across scale in an image wavelet transform. The realization of these principles in matched coding and decoding algorithms is a new one and is shown to be more effective than in implementations of EZW coding. The image coding results in most cases surpass those reported previously on the same images, which use much more complex algorithms and do not possess the embedded coding property and precise rate control. 
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