Proceedings of the International Conference , “Computational Systems and Communication Technology” Jan.,9,2009 - by Lord Venkateshwaraa Engineering College, Kanchipuram Dt.PIN-631 605,INDIA

PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO BROKEN DATA DEPENDENCIES ON THE SESSION DATA

S.VANITHA
S.A. Engineering College, Chennai

Email : vanitha81@gmail.com
Abstract— Web applications are widely adopted and their correct functioning is mission-critical for many businesses. At the same time, web applications tend to be error-prone and implementation vulnerabilities are readily and commonly exploited by attackers. The design of countermeasures that detect or prevent such vulnerabilities, or protect against their exploitation is an important research challenge for the fields of software engineering and security engineering. This paper focus on one specific type of implementation vulnerability, namely broken dependencies on session data. This vulnerability can lead to a variety of erroneous behavior at run time and can easily be triggered by a malicious user by applying attack techniques such as forceful browsing. This paper shows how to guarantee the absence of run-time errors due to broken dependencies on session data in web applications. The proposed solution combines development-time program annotation, static verification and run-time checking to provably protect against broken data dependencies. This paper have developed a prototype implementation of our approach building on the JML annotation language and the existing static verification tool ESC/Java2, and we successfully applied our approach to a representative J2EE based e-commerce application. This paper shows that the annotation overhead is very small, that the performance of the fully automatic static verification is acceptable, and that the performance overhead of the run-time checking is limited.

 MOTIVATION

The main goal of this project is to formally guarantee that no data dependencies are broken in a given Web application. The presented approach only requires a limited annotation of the given application and it applies a combination of static verification and runtime checking. The guaranteed absence of runtime errors due to broken data dependencies results in a more reliable and secures Web application. The Scope of this project is to improve the security and reliability of Web applications by guaranteeing the absence of runtime errors due to broken data dependencies on session data. This project is to shows how to guarantee the absence of runtime errors due to broken dependencies on session data in Web applications there by providing that the annotation overhead is very small, and the performance of the fully automatic static verification is acceptable and that the performance overhead of the runtime checking is limited. This project is to explore the issues on Exploitation in Web applications by applying forceful browsing.Information leakage due to bad error handling, Broken data integrity, Denial-of-service attack.
PROBLEM STATEMENT

NIST’s national vulnerability database clearly shows an increasing number of vulnerabilities located in the application layer. A similar trend stands out in the Web Hacking Incidents Database (WHID). Design flaws and implementation bugs are two important root causes for much vulnerability in web applications. They potentially lead to erroneous behavior at run time and undermine the overall reliability and security of a web application. especially the case in web applications, since attackers can more easily trigger specific implementation bugs because of the open and reactive nature of web applications. This paper focuses on one particular type of implementation bugs, namely run-time errors due to broken data dependencies in data-centered web applications. In a data-centered application, the different components of the application can indirectly share data through a shared data repository without actually interacting with each other. This loose coupling adds extra flexibility to the software development and composition process, and is often used in software engineering as a viable trade-off between data encapsulation and efficient data sharing.
Implementation:
A. Indirect Data Sharing
The application is correctly composed with respect to the indirect data sharing if, at run time, each component is able to retrieve the data from the repository that it expects to find. Thus, the correct functioning of a component depends on the run-time state of the shared repository during its execution. Or rephrased, in applications with a shared data repository, implicit semantical dependencies exist between components that share a common data item shared repository. In Fig. [image: image7.png]Fig. 4. Soluon ovemview

horteston
ke s

Deptoyment
Tamaron

g o
S et

Verteaton

Soleatonpact:
Sropey
Verteatin

Frooed

TR

B. Session Sharing in Web Applications
Web applications are server-side applications that are invoked by thin web clients (browsers), typically using the HyperText Transport Protocol (HTTP). A user can navigate through a web application by clicking links or URLs in his browser, and he is also able to supply input parameters by completing web. Next to tracking to which user session a web request belongs, these technologies also provide server-side state for each user session. While processing a web request, server-side web components can store non-persistent, user-specific data (e.g. a shopping cart in an e-commerce-site) in a shared data repository bound to the user session.

[image: image2.emf]
WAFs are applied to mitigate a range of vulnerabilities, including vulnerabilities to forceful browsing. Forceful browsing is the act of directly accessing web pages (URLs) without consideration for their context within an application session .Bypassing intended application flow in a web application can generally lead to unauthorized access to resources or unexpected application behavior. Moreover, a malicious user will typically apply forceful browsing to exploit implementation-specific broken data dependencies in data-centered web applications According to the ”Web Application Firewall Evaluation Criteria” such a WAF implements the strict request flow enforcement criterion. This criterion refers to the technique where a WAF monitors individual user sessions and keeps track of the links already followed and of the links that can be followed at any given time [12]. An important drawback of WAFs is their limited coverage of protecting implementation-specific vulnerabilities. A WAF uses either a positive or negative security model as basis for access decisions, and is configured manually by the administrator or automatically by observing legitimate or malicious network traffic.The high-level goal of this research is to increase the reliability and security of data-centered web applications by reducing runtime errors caused by broken data dependencies. We define the following desired composition property for indirect data sharing in data-centered web applications.
c.No broken data dependencies:

No client request causes a data item to be read from the server-side, shared session repository before it actually has been written. In particular, this paper eliminates certain types of run-time errors (such as a NullPointerException or a ClassCastException) by giving a formal guarantee that the no broken data dependencies property is not violated in a given composition.
[image: image3.emf]
1) Interoperability: It is important that the proposed solution is interoperable with the existing web infrastructure and does not interfere with other web security solutions.
2) Usability: In order to encourage wide adoption by developers, we also identified two important usability characteristics for the solution: limited overhead and applicability to real-life applications.

a) Limited overhead: The less overhead and complexity the solution introduces, the more likely that the proposed solution will actually be adopted.

b) Applicability to real-life applications:
The applicability of the proposed solution may not be limited to toy examples, but the proposed solution must also be more generally applicable to larger, real-life applications.
AN INTRODUCTION TO SOFTWARE ARCHITECTURE [2]:

In this paper, it provides an introduction to the emerging field of software architecture.A number of common architectural styles upon which many systems are currently based and show how different styles can be combined in a single design. This level of design has been addressed in a number of ways including informal diagrams and descriptive terms, module interconnection languages, templates and frameworks for systems that serve the needs of specific domains, and formal models of component integration mechanisms.
JAVA SERVLET TECHNOLOGY [3]:
In this paper, Java technology isn't just for programming applets which run on the client side in web browsers, or for writing Internet applications.To create multi-tier enterprise applications which integrate the power and flexibility of Java throughout the existing network. It is used to provide the secure web-based access to data which is presented using HTML web pages, interactively viewing or modifying that data using dynamic web page generation techniques and they do not need a graphical user interface.It is effective in the part of an order entry and processing system, working with product and inventory databases and perhaps an on-line payment system, on-line conferencing Built with 100% Pure Java Servlets can be prevented from altering data.

SESSION TRACKING ON THE WEB [7]:
In this paper, a number of problems that arise from the fact that HTTP are a "stateless" protocol in the on-line shopping, it is a real annoyance that the Web server can't easily remember previous transactions. This makes applications like shopping carts very problematic. It stores the session identifier, Setting an appropriate expiration time for the cookie (sessions interrupted by 24 hours probably should be reset), and Associating information on the server with the session identifier the server can associate that session identifier with data it has stored about that session. The advantage that it works with browsers that don't support cookies or where the user has disabled cookies. If the user leaves the session and comes back via a bookmark or link, the session information can be lost. Using sessions in servlets is quite straightforward, and involves looking up the session object associated with the current request, creating a new session object when necessary, looking up information associated with a session, storing information in a session, and discarding completed or abandoned session.
WEB APPLICATION FIREWALL EVALUATION CRITERIA [9, 12]:
In this paper, WAF solutions are capable of preventing attacks that network firewalls and intrusion detection systems can’t. The goal of this project is to develop a set of web application firewall evaluation criteria testing methodologies that can be used by any reasonably skilled technician to independently assess the quality of a WAF solution. The WAF is capable of blocking offending traffic, describe the nature of the blocking functionality by Blocks the HTTP request, connection, IP address, application session and user.Two aspects of the high availability requirement. One is to prevent the web application firewall from becoming a single point of failure. The other, to allow the WAF to scale and remain fully functional for very busy sites. Miscellaneous provides the Interface robustness and reliability, Management User Interface Implementation, Management Interface.
In this paper, mainly focus on broken access control vulnerabilities, in particular on vulnerabilities leading to forceful browsing which is the act of directly accessing web pages (URLs) without consideration for their context within an application session In order to save non-persistent, session-relevant state, servlets can store and retrieve data from a shared data repository (Http Session) that is uniquely bound to a user’s session Firewall configuration analysis is proposed to manage complex network infrastructures.
STATIC VERIFICATION OF INDIRECT DATA SHARING IN LOOSELY-COUPLED COMPONENT SYSTEMS [13]:
In this paper, the main contribution of this thesis is an approach to reduce the number of runtime errors due to broken data dependencies in data-centered, component-based applications.Statically verify the desired composition property in deterministic software compositions. Shared data interactions of the component are. Component contracts are used to verify the composition property in a given composition by combining the static verification approach with run-time checking. The run-time checking capabilities of a Web Application Firewall to guarantee that the incoming requests of a user’s session adheres to the verified labeled state machine and thus that the no broken data dependencies composition property also holds in the given composition. Towards a new composition by adding, removing and replacing loosely-coupled software units at run time. A main advantage of JML is the large amount of tool support available for run-time contract checking, test generation, static verification and inference of specifications. An intermediate action can break the dependencies between one action writing shared data and another action retrieving that data, without ESCJava/2 being able to detect that violation

SECURING WEB APPLICATION CODE BY

STATIC ANALYSIS AND RUNTIME PROTECTION [30]:

In this paper, it describes a sound and holistic approach to ensuring Web application security. Viewing Web application vulnerabilities as a secure information flow problem, created a lattice-based static analysis algorithm derived from type systems and type state, and addressed its soundness. During the analysis, sections of code considered the vulnerable are instrumented with runtime guards, thus securing Web applications in the absence of user intervention. With sufficient annotations, runtime overhead can be reduced to zero. It also created a tool named WebSSARI (Web application Security by Static Analysis and Runtime Inspection) to test our algorithm, and used it to verify 230 open-source Web application projects on SourceForge.net, which were selected to represent projects of different maturity, popularity, and scale. 69 contained vulnerabilities and their developers were notified.Our statistics also show that static analysis reduced potential runtime overhead by 98.4%.Our proposed system acts as an extension to a language’s existing type system and have implemented WebSSARI (Web application Security by Static Analysis and Runtime Inspection).Induced overhead is low because the number of insertions is reduced to a minimum when information gathered from static analysis is utilized.The goal of static checking is simply to find software bugs rather than to prove that one does not exist.

In contrast, Flanagan et al.’s ESC/Java designed to check the correctness of Java programs requires additional annotations from programmers.

A good example of this practice is Perl’s “tainted mode” [72], which ensures system integrity by tracking tainted data submitted by the user at runtime.

This approach is based on a combination of automata-theoretic technique and a variant of the context-free language (CFL) reachability problem .This technique is based on applications of a string analysis for Java programs and a variant of the context-free language reachability algorithm. The tool has detected known and unknown errors in these programs, and it is rather precise with low false-positive rates on test programs.
OVERVIEW OF THE SOLUTION:
The component’s interactions with the shared session repository and use static and dynamic verification to guarantee that no client-server interaction leads to violation of the no broken datadependenciesproperty.

[image: image4]
Fig. 4 depicts an overview of our solution.
Firstly, the interactions with the shared session repository are explicitly specified in component contracts, and static verification is used to verify that each component implementation obeys its contract specification. Secondly, the no broken data dependencies property is verified in each possible execution path within a user’s session. Next, the property is verified under the assumption that the client-server interactions are prefixes of the intended clientserver protocol. Finally, run-time policy enforcement is used to guarantee that only web requests that are prefixes of the intended client-server protocol are processed by the web application.
 A. Server-side Specification and Verification: In order to specify a component’s interactions with the shared session repository, each web component is extended with an appropriate component contract. The contract is expressed in a problem-specific contract language, which is easy to understand for application developers. The grammar of the proposed
Problem-specific contract language is shown in
Fig. 5.

[image: image5.emf]
a) The read statement: This lists the component’s expectations about the repository state. shown in Fig. 3.

[image: image6.emf]
b) The write statement: expresses the data items on the shared session repository that will be altered into a non-null instance of the specified type by executing the component.

c) The possibly write statement: lists the data items on the shared session repository that may be altered by executing the component. This statement defines that for each of the data items, the write interactions results in a non-null instance of the specified

type, or that the particular data item is not altered at all, depending on unspecified conditions.
CONTRACT: = SPECLINE_

SPECLINE: = SPECTAG (READS | WRITES | CONDITIONALWRITES)

SPECTAG: = ’//spec: ’

READS: = ’reads’ READOBJECTSET’ from session;’

READOBJECTSET: = ’{’ (READOBJECT,)_ READOBJECT ’}’

READOBJECT: = (’Nullable<’ TYPE ’>’ NAME | TYPE NAME)
WRITES: = ’writes’ WRITEOBJECTSET’ on session;’

WRITEOBJECTSET: = ’{’ (WRITEOBJECT,)_ WRITEOBJECT ’}’

WRITEOBJECT: = TYPE NAME

CONDITIONALWRITES: = ’possibly’ WRITES

TYPE: = IDENTIFIER

NAME: = IDENTIFIER
Fig. 5. EBNF notation of the problem-specific contract language

1 // spec: reads {ResourceBundle messages, Nullable<ShoppingCart> cart, Nullable<Currency> currency} from session;

2 // spec: writes {ShoppingCart cart} on session;
3 // spec: possibly writes {Currency currency} on session;
Fig. 6. Problem-specific specification of ShowCartServlet
ShowCartServlet:

ResourceBundle messages (read)

ShoppingCart cart (def. read/write)

Currency currency (cond. def. read/write)

The read interaction for the messages data item is translated in a read statement in the problem-specific contract The def. read/write interaction is

translated in a combination of a Nullable-labeled read statement

B. Application-specific Property Verification

The no broken data dependencies property is verified by checking all possible execution paths in a user’s session. To verify the property statically, an upper bound is defined for the client-server interactions, namely the intended client-server protocol. This is an upper bound for the non-deterministic interactions between client and server, and includes all valid client-server interactions that may occur in the application under normal circumstances. In a J2EE web application for example, the web deployment descriptor contains among others the mapping between URLs and servlets, as well the servlets on which filters are applied. To verify the desired application property, it is important that component contracts precisely describe the interactions with the shared repository.

DESIGN AND PROTOTYPE

The implementation of the prototype is as follow
PROTOCOL: = /bookstore + SERVLET A _ + RECEIPT

RECEIPT: = (SERVLET B + SERVLET _ + order filter + /bookreceipt) | nil

SERVLET: = SERVLET A | SERVLET B

SERVLET A: = /bookstore | /bookdetails | /bookshowcart | /banner | nil

SERVLET B: = /bookcatalog | /bookcashier
1 package servlets ;

public class ShowCartServlet extends HttpServlet {

4 // JML contract:

5 //@ also

6 //@ requires request!= null;
7 //@ requires response!= null;
8 //@ requires request . Session!= null;
9 //@ requires request . session . Currency instanceof Currency || request . session . currency == null;

10 //@ requires request . session .messages instanceof ResourceBundle;

11 //@ requires request . session . cart instanceof ShoppingCart || request . session . cart == null;

12 //@ ensures request . session . cart instanceof ShoppingCart;

13 //@ ensures request . session . currency instanceof Currency || \old(request . session . currency) == request. session. currency;

14 //@ modifies request . session . cart ;

15 //@ modifies request . session . currency;

16 public void doGet(HttpServletRequest request , HttpServletResponse response) throws ServletException , IOException;

17 }

Fig. 9. Contract for shared session repository interactions (ShowCartServlet.spec)

A. Server-side Specification and Verification

To check if the implementation of a component adheres to its contract, the problem-specific contracts

are translated into the Java Modeling Language (JML) In our prototype, the problem-specific component contracts are translated automatically in JML contracts.
a) Read statements: Read statements in the problem-specific component contracts are translated into the precondition
b) Write statements: Write statements in the problem specific component contracts are translated in an ensures clause specifying that after execution the given data item is of the expected type.

c) Possibly write statements: Possibly write statements in the problem-specific component contracts are translated in an ensures clause specifying that after execution the given data item is of the expected type or that the given data item remains unchanged while executing the tools is available that make different trade-offs in verification power and need for user interaction.In our prototype, we have chosen to use the ESC/Java2 verifier.The main advantage of this verifier is that it requires no user interaction. On the downside, the verifier is far from complete and has some known sources of unsoundness item may not be modified by the ShowCartServlet.The component’s implementation triggers an unspecified state change in the shared data repository, the verification of the component with ESC/Java2 will detect this contract violapackage

javax. servlet . http ;

public interface HttpSession {

//@ public ghost Object cart ;

//@ public ghost Object currency;

//@ public ghost Object messages;

//@ requires false ;

//@ also

//@ requires name == ”cart”;

//@ ensures this . cart == value;

//@ modifies this . cart ;

//@ also

//@ requires name == ”currency”;

//@ ensures this . currency == value;

//@ modifies this . currency;

//@ also

//@ requires name == ”messages”;

//@ ensures this .messages == value;

//@ modifies this .messages;

public void setAttribute (String name, Object value);

//@ requires false ;

//@ also

//@ requires name == ”cart”;

//@ ensures \result == this . cart ;

//@ modifies \nothing;

//@ also

//@ requires name == ”currency”;

//@ ensures \result == this . currency;

//@ modifies \nothing;

//@ also

//@ requires name == ”messages”;

//@ ensures \result == this .messages;

//@ modifies \nothing;

public /_@ pure @_/ Object getAttribute (String name);

//@ requires false ;

public void removeAttribute (String name);

}

Fig. 10. JML contract of the session repository (HttpSession.spec)

//@ requires request != null ;

//@ requires request . session .messages == null && request.session . cart == null && request.session . currency == null;

public void protocolCheck(HttpServletRequest request , HttpServletResponse response){

try {

Random random = new Random();

bookstore .doGet(request , response);

while(random.nextBoolean()){

int randomInt = random.nextInt ();

switch(randomInt){

case 0: showcart .doGet(request , response); break;

case 1: banner.doGet(request , response); break;

case 2: bookstore .doGet(request , response); break;

case 3: bookdetail .doGet(request , response); break;

default : break;

}

}

if (random.nextBoolean()){

switch(random.nextInt ()){

case 0: cashier .doGet(request , response); break;

default : catalog .doGet(request , response); break;

}

while(random.nextBoolean()){

switch(random.nextInt ()){

case 0: showcart .doGet(request , response); break;

case 1: catalog .doGet(request , response); break;

case 2: cashier .doGet(request , response); break;

case 3: bookstore .doGet(request , response); break;

case 4: bookdetail .doGet(request , response); break;

case 5: banner.doGet(request , response); break;

default : break;

}

}

orderFilter . doFilter (request , response , null);

receipt .doPost(request , response);

}

} catch(Exception e) {

e. printStackTrace (); }

}

Fig. 12. Protocol-simulating check method to be verified by ESC/Java2

C. Run-time Protocol Enforcement

Since the static verification step requires that the protocol at run time adheres to the intended client-server protocol, run-time enforcement is needed to ensure that only requests conform the intended protocol are processed by the application.

package javax. servlet . http ;

public interface HttpSession {

//@ public ghost Object cart ;

//@ public ghost Object currency;

//@ public ghost Object messages;

//@ requires false ;

//@ also

//@ requires name == ”cart”;

//@ ensures this . cart == value;

//@ modifies this . cart ;

//@ also

//@ requires name == ”currency”;

//@ ensures this . currency == value;

//@ modifies this . currency;

public void setAttribute (String name, Object value);

//@ requires false ;

//@ also

//@ requires name == ”cart”;

//@ ensures \result == this . cart ;

//@ modifies \nothing;

//@ also

//@ requires name == ”currency”;

//@ ensures \result == this . currency;

//@ modifies \nothing;

//@ also

//@ requires name == ”messages”;

//@ ensures \result == this .messages;

//@ modifies \nothing;

public /_@ pure @_/ Object getAttribute (String name);

//@ requires false ;

public void removeAttribute (String name);

}

Fig. 11. Component-specific specification of the repository .
 RELATED WORK

The work presented in this paper is related to a broad spectrum of ongoing research. We only present some key pointers for each of the domains, and present in more detail for the domain most related to the proposed solution, namely static and dynamic verification in web application security.Several implementation-centric security countermeasures for web applications have proposed but most of them focus on injection attacks (SQL injection, command injection, XSS, . . .) and use tainting, pointer or data flow analysis.

Our solution targets another set of implementation bugs, namely bugs due to broken data dependencies on the server-side session state and to do so we rely on the static and dynamic verification of component contracts.Gould et al. also aim to reduce the number of run-time errors in web applications by applying static verification Their solution focusses on the reduction of SQL run-time exceptions and uses a static analysis tool to verify the correctness of all dynamically generated query strings within an application.Our solution is based on program annotations and we verify interactions between components and the non-persistent, serversidestate.The given solution static and dynamic verification to reduce the run-time enforcement overhead. The idea of combining static and dynamic verification is not new, and is for instance in securing web application against web vulnerabilities caused by insecure information flow, such as SQL injection, XSS and command injection.

SOLUTION
Our solution combines development-time program annotation, static verification and run-time checking to provably protect against broken data dependencies in web applications. We designed and developed a prototype implementation building on the Java Modeling Language (JML) and the static verifier ESC/Java2. In addition, we successfully applied our approach to Duke’s BookStore, a representative J2EE-based e-commerce application. Our solution also provides a good trade-off between usability and verification power. Because of some well-considered developer-centric design decisions in our prototype, the validation experiment showed a limited overhead and demonstrated the applicability of the presented approach to real-life applications. In

addition, the proposed solution is interoperable with the existing web infrastructure and does not interfere with other web security solutions. Moreover, the proposed solution is able to leverage the power of existing Web Application Firewalls by providing formal techniques to prove the absence of broken data dependencies in a given WAF protocol enforcement configuration. To the best of our knowledge, the research presented in this paper is the first to improve web application security by providing an appropriate solution to the specific problem of broken data dependencies on the session data.

REFERENCES

[1] P. G. Neumann, “Keynote speech: System and Network Trustworthiness in Perspective,” in 13th ACM Conference on Computer and Communications ecurity, CCS 2006, Alexandria, VA, USA, October 30 - November3, 2006.

[2] M. Shaw and D. Garlan, Software Architecture: Perspectives on an merging Discipline. Upper Saddle River, NJ, USA: Prentice-Hall,Inc., 1996.
[3] Sun Microsystems, Inc., “Java Servlet Technology,” http://java.sun.com/ roducts/servlet/.

[4] V. Samar, “Unified login with pluggable authentication modules (PAM),”in Proceedings of the 3rd ACM conference on Computer and Communications Security, CCS 1996. ACM Press, 1996, pp. 1–10.

[5] E. Freeman, K. Arnold, and S. Hupfer, JavaSpaces Principles, Patterns,and Practice. Essex, UK, UK: Addison-Wesley Longman Ltd., 1999.
[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” http://www.ietf.org/rfc/rfc2616.txt, June 1999, Request For Comments: 2616(Category: Standards Track).

[7] V. Raghvendra, “Session tracking on the web,” Internetworking, vol. 3,no. 1, March 2000.

[8] Karl Forster, Lockstep Systems, Inc., “Why Firewalls Fail to

Protect Web Sites,” http://www.lockstep.com/products/webagain/

why-firewalls-fail.pdf.

[9] I. Ristic, “Web application firewalls primer,” (IN)SECURE, vol. 1, no. 5,pp. 6–10, January 2006.

[10] S. Pettit, “Anatomy of a web application: Security considerations,”Sanctum, Inc., Tech. Rep., Jul. 2001.

[11] webScurity, Inc., “The Weakest Link: Mitigating Web ApplicationVulnerabilities,”http://www.webscurity.com/pdfs/webapp vuln wp.pdf.

[12] Web Application Security Consortium, “Web Application Firewall EvaluationCriteria, version 1.0,”http://www.webappsec.org/projects/wafec/,January 2006.

[13] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten, “Static Verificationof Indirect Data Sharing in Loosely-coupled Component Systems,” inSoftware Composition, ser. Lecture Notes in Computer Science, vol.4089. Springer Berlin / Heidelberg, 2006, pp. 34–49.

[14] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans, D. Green,K. Haase, and E. Jendrock, The J2EE 1.4 Tutorial. Sun Microsystems,Inc., December 2005.

[15] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten, “Dependency analysis of the Gatormail webmail application,” Department of ComputerScience, K.U.Leuven, Leuven, Belgium, Report CW 427, Sep. 2005.

[16] G. T. Leavens, “The Java Modeling Language (JML),” http://www.jmlspecs.org/.

[17] L. Desmet, P. Verbaeten, W. Joosen, and F. Piessens, “Provable protection agains web application vulnerabilities related to session data dependencies,”http://www.cs.kuleuven.be/_lieven/research/TSE2007/.

[18] A. D. Raghavan and G. T. Leavens, “Desugaring JML method specifications,”Iowa State University, Department of Computer Science, Tech.Rep. 00-03e, May 2005.

[19] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.Leino, and E. Poll, “An overview of JML tools and applications,”International Journal on Software Tools for Technology Transfer (STTT),vol. 7, no. 3, pp. 212–232, Jun. 2005.

[20] KindSoftware, “The Extended Static Checker for Java version 2(ESC/Java2),”http://secure.ucd.ie/products/opensource/ESCJava2 [21] J. R. Kiniry, A. E. Morkan, and B. Denby, “Soundness and completeness

warnings in esc/java2,” in SAVCBS ’06: Proceedings of the 2006 conferenceon Specification and verification of component-based systems.New York, NY, USA: ACM Press, 2006, pp. 19–24.
[22] T. Pietraszek and C. V. Berghe, “Defending against injection attacks through context-sensitive string evaluation,” in Proceedings of the 8thInternational Symposium on Recent Advances in Intrusion Detection(RAID2005), 2005, pp. 124–145.

[23] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation forjava,” in ACSAC ’05: Proceedings of the 21st Annual Computer Security
Applications Conference. Washington, DC, USA: IEEE Computer

Society, 2005, pp. 303–311.

[24] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,“Automatically hardening web applications using precise tainting.” inSEC, R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura, Eds. Springer,2005, pp. 295–308.

[25] W. G. J. Halfond and A. Orso, “Amnesia: analysis and monitoring for neutralizing sql-injection attacks,” in ASE ’05: Proceedings ofthe 20th IEEE/ACM international Conference on Automated softwareengineering. New York, NY, USA: ACM Press, 2005, pp. 174–183.

[26] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: apractical approach to defeat a wide range of attacks,” in USENIX-SS’06:Proceedings of the 15th conference on USENIX Security Symposium.Berkeley, CA, USA: USENIX Association, 2006, pp. 9–9.

[27] V. B. Livshits and M. S. Lam, “Finding security errors in Java programs with static analysis,” in Proceedings of the 14th Usenix Security Symposium, Aug. 2005, pp. 271–286.

[28] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static detection of web application vulnerabilities,” in PLAS ’06: Proceedings of the 2006 workshop on Programming languages and analysis for security. New York, NY, USA: ACM Press, 2006, pp. 27–36.

[29] C. Gould, Z. Su, and P. Devanbu, “Static checking of dynamically generated queries in database applications,” in ICSE ’04: Proceedings of the26th International Conference on Software Engineering. Washington,DC, USA: IEEE Computer Society, 2004, pp. 645–654.

[30] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo,“Securing web application code by static analysis and runtime protection,”in WWW ’04: Proceedings of the 13th international conference on World Wide Web. New York, NY, USA: ACM Press, 2004, pp. 40–52.

[31] J. Offutt, Y. Wu, X. Du, and H. Huang, “Bypass testing of web applications.” in ISSRE. IEEE Computer Society, 2004, pp. 187–197.

[32] T. E. Uribe and S. Cheung, “Automatic analysis of firewall and network intrusion detection system configurations,” in FMSE ’04: Proceedings of the 2004 ACM workshop on Formal methods in security engineering. New York, NY, USA: ACM Press, 2004, pp. 66–74.

[33] K. Golnabi, R. K. Min, L. Khan, and E. Al-Shaer, “Analysis of Firewall Policy Rules Using Data Mining Techniques,” in 10th IEEE/IFIP Network Operations and Management Symposium (NOMS 2006), April 2006, pp. 305–315.

[34] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52, 1992.

[35] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,1998.

[36] N. Medvidovic and R. N. Taylor, “A classification and comparison framework for software architecture description languages,” IEEE Trans.
Softw. Eng., vol. 26, no. 1, pp. 70–93, 2000.

[37] P. C. Clements, “A survey of architecture description languages,” in Proceedings of the 8th International Workshop on Software Specification and Design. IEEE Computer Society, 1996, p. 16.

[38] J. Aldrich, “Using types to enforce architectural structure,” Ph.D. dissertation, University of Washington, August 2003.

[39] B. Meyer, “Applying ”Design by Contract”,” Computer, vol. 25, no. 10, pp. 40–51, 1992.

[40] B. Liskov, Abstraction and specification in program development. Cambridge,

MA, USA: MIT Press, 1986.

[41] Y. L. Traon, B. Baudry, and J.-M. Jezequel, “Design by Contract to Improve Software Vigilance,” IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 571–586, 2006.

[42] C. Szyperski, Component Software: Beyond Object-Oriented Programming. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,Inc., 2002.

[43] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec# Programming System: An Overview,” Lecture Notes in Computer Science, vol.3362/2005, pp. 49–69, January 2005.

[44] B. Jacobs, K. R. M. Leino, F. Piessens, and W. Schulte, “Safe concurrency

for aggregate objects with invariants,” in Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods. IEEE Computer Society, 2005, pp. 137–146.
[45] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet,“Enforcing high-level security properties for applets,” in CARDIS, J.-J. Quisquater, P. Paradinas, Y. Deswarte, and A. A. E. Kalam, Eds.Kluwer, 2004, pp. 1–16.

Copy Right @CSE/IT/ECE/MCA-LVEC-2009

[image: image1.emf]