Proceedings of the International Conference , “Computational Systems and Communication Technology” Jan.,9,2009 - by Lord Venkateshwaraa Engineering College,
Kanchipuram Dt.PIN-631 605,INDIA

Semantic Web Search Engine for Retrieval of Text Document using Hierarchical Clustering
M. Anbarasi1
J. Anuradha2
Lecturer , Sr. Lecturer

 School of Computing Sciences, Vellore Institute of Technology

manbarasi@vit.ac.in
, januradha@vit.ac.in
Abstract

Today the reach of World Wide Web is increasing at an unprecedented rate, users still have problems obtaining the most relevant information when processing their web queries. The user needs search engine to retrieve the relevant information efficiently to get the best out of the internet. For the search engine it never had been an easier task. The process involves not only keeping huge repository but also retrieves the information in the minimum possible time. Battles between Google, Yahoo, Microsoft, etc., in terms of optimizing the search and processing the user query in a better way. In this paper, we are going discuss on a Semantic Web Search Engine (SWSE) that performs search for retrieving the text documents using hierarchical clustering. This search engine improves the query processing using stemming, normalization, go and stop word. The SWSE is used to mining documents by exploiting semantic information of their text. SWSE performs mining based on similarities between the documents by calculating distance measures. Further, it has advanced search features such as boolean operators that allow users to use a proximity operator, wildcard and nesting. And also, quick view which provides the preview window that gives the user, an idea of what they will view if they click a link.
INTRODUCTION
The explosion of available information on the World Wide Web has lead to the need for processing queries intelligently as per user’s requirements. Today, search engines constitute the most helpful tools for organizing information and extracting knowledge from the web [1]. However, it is common that even the most renowned search engines return result set including many pages which are definitely useless for the user [5]. There is no doubt that the user would be able to easily decide which of them are really of their interest by quickly examining the result set. Anyway, the presence of unwanted pages in the result set would force him to perform a processing on retrieved information to discard unneeded ones. Even though several automatic techniques have been proposed [6], still the result refinement remains a time waste. Some of the current search engines have the following drawbacks in processing of web queries
i) Lack of identification of good initial query: There is no systematic way or guidelines that support the user to identifying the best terms for a query. Using very specific words for search, leads to missing some of the results that may be expected results.

ii) Language ambiguity: Documents that deal with the same domain can use different terms for describing the same concepts. Therefore, for a given concept (sport stuff) some documents may use the terms (sport stuff), other documents may use synonyms (sport material), and other terms that deal with the same concept with more generally (playing sport artifact) or specifically (trainer), but still there is an ambiguity which won’t give an expected result.
iii) Producing unexpected result: A result is valid if it belongs to the expected result. The problem is that the expected result is in the mind of the user. A result is also valid if it belongs to the intersection of the intended domains. Unfortunately, we do not know what those domains are, and, due to word ambiguity problems, we cannot conclude that the obtained domains are the expected ones and hence, it is not possible to identify which results are relevant for the user and which are irrelevant.
The above issues are solved by the proposed methods.
i) Stemming

ii) Normalization

iii) Go and Stop word

iv) Developing measures to estimate similarities between documents
The rest of the paper is organized as follows. In Section 2 we provide an overview of existing strategies for Semantic web search. In section 3 the basic idea behind the proposed approach and some of the indexing and optimization techniques have also been discussed. In section 4 deal with the various algorithms used in the implementation of SWSE discussed in detail.

2 RELATED WORK
A Web search engine is a search engine designed to search for information on the WWW. The Web search process has two main parts off-line and on-line. The off-line part is executed periodically by the search engine, and consists in downloading a sub-set of the web to build a collection of pages, which is then transformed into a searchable index. The on-line part is executed every time a user query is executed, and uses the index to select some candidate documents that are sorted according to an estimation on how relevant they are for the user’s need. Web search engine process the web pages in many different formats such as plain text, HTML pages, PDF documents, and other proprietary formats. The first stage for indexing Web pages is to extract a standard logical view from the documents. The most used logical view for documents in search engines is the “bag of words” model, in which each document is seen only as an unordered set of words. In modern Web search engines[14,4], this view is extended with extra information concerning word frequencies and text formatting attributes, as well as meta-information about Web pages including embedded descriptions and explicit keywords in the HTML markup.
2.1 Data Mining

Data mining (DM) is an information extraction activity to discover hidden, implicit, previously unknown, and potentially useful facts contained in large databases or data warehouses [7]. In Data mining the Document mining has already been focused for the last few decades [8]. There are four main aspects that pertain to most of document mining approaches: (a) Representation models. (b) Similarity measures. (c) Mining processes. (d) Evaluation methods [6, 12, 13]. Document mining processes such as document clustering, document classification, information retrieval (IR), information filtering (IF), and information extraction (IE) may vary in their requirements and specifications, yet their goals are to discover and extract knowledge from documents.

2.2 Document Clustering

Document clustering aims to automatically divide documents into groups based on similarities of their contents. Each group (or cluster) consists of documents that are similar between themselves (have high intra-cluster similarity) and dissimilar to documents of other groups (have low inter-cluster similarity) (Figure 1). Clustering documents can be considered as an unsupervised task that attempts to classify documents by discovering underlying patterns, i.e., the learning process is unsupervised, which means that no need to define the correct output (i.e., the actual cluster into which the input should be mapped to) for an input.

Document clustering is used to disambiguate results of information retrieval systems, by displaying them into specific topics. Aside from visualization of search results, it is used for taxonomy design and similarity search. Clustering can also help speed up similarity search, where close-by documents are to be retrieved. Additionally, it is argued that sentence-based text clustering can be a key factor for performance improvement of the systems [10].There are many clustering techniques in the DM, each adopting a certain strategy for detecting the grouping in the data, such as K-means algorithm [15] and hierarchical clustering [9].

3 SWSE (SEMANTIC WEB SEARCH ENGINE)

Back-end process: Initial phase where web request is passed to World Wide Web and crawler the web page, crawler also maintains array list containing list of visited sites, and if it would come across any particular link in web page it searches for the match in the visited array list. If it matches, progress event bar shows that this website is already crawled. Else it adds that webpage to queue of WebPages that are to be crawled. For query normalization index the data processed by web crawler which would be stored in database.
Front-end process: When a user enters a query in to a search engine query parser, parses the given query i.e. the entered string undergoes Normalization (word and number) and stemming also checks with Stop words and Go words. Then searches in the database for appropriate web page, based on page ranking algorithms web pages are shown to user.

When a user enters a query into a search engine interface the engine examines its index and provides a list of best matching web pages according to its criteria. The test results are usually with a short summary containing the

 Fig 1: Document Clustering
document’s title and sometimes parts of the text. SWSE support the use of the Boolean operators AND, OR and NOT to further specify the search query. SWSE also provides an advanced feature called proximity search which allows user to define the distance between keywords.
A SWSE operates, in the following order
1. Web Crawling

2. Indexing

3. Searching

3.1.1 Web Crawler

To find information on the hundreds of millions of Web pages that exist, a search engine employs special software robots, called spiders. The spiders build lists of the words found on Web sites called the web crawling. There are three fundamental tasks for a search spider:

1. Finding the pages to index
2. Downloading each page successfully

3. Parsing the page content and indexing it
Meta tags allow the owner of a page to specify key words and concepts under which the page will be indexed. This can be helpful, especially in cases in which the words on the page might have double or triple meanings. The Meta tags can guide the search engine in choosing the correct word from several possible meanings. However, there is a danger in over-reliance on meta tags, because a careless or unscrupulous page owner might add meta tags that fit very popular topics but have nothing to do with the actual contents of the page. To protect against this, spider will correlate meta tags with page content, rejecting the meta tags that don't match the words on the page.
3.1 System Architecture

 Fig 2: SWSE Architecture
3.1.2 Indexing
This SWSE facilitate fast and accurate information retrieval by using indexing parsing, and storing data. Indexing incorporates interdisciplinary concepts from linguistics, cognitive psychology, mathematics, informatics, physics and computer science. An alternate name for the process in the context of search engines designed to find web pages on the Internet is Web indexing. The purpose of storing an index is to optimize speed and performance in finding relevant documents for a search query. Without an index, the search engine would scan every document in the corpus, which would require considerable time and computing power. For example, while an index of 10,000 documents can be queried within ms, a
sequential scan of every word in 10,000 large documents could take hours. The additional computer storage required to store the index, as well as the increase in the time required for an updating and for time saving during information retrieval.
3.1.2.1 The Forward Index
The forward index stores a list of words for each document. The following is a simplified form of the forward index:

The rationale behind developing a forward index is that as documents are parsing, it is better to immediately store the words per document.
	Forward Index

	Document
	Words

	Document 1
	The,cow,says,moo

	Document 2
	The,cat,and,the,hat

	Document 3
	The,dish,ran,away,with,the,spoon

There are two approaches (probably more, but two main options) for parsing the links (and other data) out of HTML:

1. Reading an entire page string, building a DOM (Document Object Model), and walking through its elements looking for links.
2. Using Regular Expressions to find link patterns in the page string.

SWSE follows the second approach because it's much simpler to use Regular Expressions

3.1.3 Stop Words
Our search engine SWSE ignores common words and characters, such as "where" and "how," as well as certain single digits and single letters. These terms rarely help narrow a search and can slow search results. We call them "stop words." The basic SWSE is that we don't want to waste space in the catalog storing data will never be used, the 'Stop Words' assumption is that you'll never search for words like "a in at I" because they appear on almost every page, and therefore don't actually help you find anything. The Stop Word code strips out ALL one and two letter words, plus the, and, that, you, this, for, but, with, are, have, was, out, not
3.1.4 Word Normalization
 Words were often being stored with any punctuation that was adjacent to them in the source text. For example, the catalog contained files with word instances for “People, People-, People , People
This prevented the pages containing those words from ever being returned in a search, unless the user had typed the exact punctuation as well - in the above example a search for people would only return one page, when you would expect it to return all four pages.
Also, it was implemented with the Trim () method which was not parsing out punctuation within words (aside: the handling of parenthesized words is still not satisfactory). The following 'white list' of characters that are allowed to be indexed ensures that NO punctuation is accidentally stored as part of a word.

key=System.Text.RegularExpressions. Regex.Replace(key,@"[^a-z0-9,.]", System.Text.RegularExpressions .RegexOptions.IgnoreCase);

3.1.5 Number Normalization
Numbers are a special case of word normalization: some punctuation is required to interpret the number (e.g. decimal point), then convert it to a proper number.
Although not perfect, this means phone numbers written as 0412-345-678 or (04)123-45678 would both be Catalogued as 0412345678 and therefore searching for either 0412-345-678 or (04)123-45678 would match both source documents.

private bool IsNumber (ref string word)

{ try {

long number = Convert.ToInt64(word); //;int.Parse(word);

 word = number.ToString(); return (word!=String.Empty);//true; }

 catch { return false; }}

3.1.6 Go Words

After the Word Normalization section above you can see how cataloging and searching for a technical term/phrase (like C# or C++) is impossible - the non-alphanumeric characters are filtered out before they have a chance to be catalogued. To avoid this, search engine allows a 'Go words' list to be created. A 'Go word' is the opposite of a 'Stop word' instead of being blocked from catalog, it is given a free-pass into the catalog, bypassing the normalization and stemming code. The weakness in this approach is that you must know ahead of time all the different Go words that your users might search for. In future, you might want to store each unsuccessful search term for later analysis and expansion of your Go word list. The Go word implementation is very simple:

public bool IsGoWord (string word)

{ switch (word.ToLower()) {

 case "c#": case "vb.net": case "asp.net": return true;
break;

 } return false; }

3.1.7 Stemming
The most basic explanation of 'stemming' is that it attempts to identify 'related' words and return them in response to a query. The simplest example is plurals: searching for "field" should also find instances of "fields" and vice versa. More complex examples are "realize" and "realization", "populate" and "population".
public void stem()

{
k = i - 1;
if (k > 1)
{

step1(); step2(); step3(); step4(); step5(); step6();

} i_end = k+1; i = 0; }

Stemming algorithm has six steps where each step performs specific action.

Step1: gets rid of plurals and -ed or -ing. e.g. disabled (disable caresses (caress messing (mess
Step2: It turns terminal y to i when there is another vowel in the stem
Step3: Maps double suffices to single ones. so -ization (= -ize plus-ation) maps to -ize etc.

Step4:It deals with -ic-, -full, -ness etc. similar strategy to step3.

Step5: takes off -ant, -ence etc., in context <c>vcvc<v>

Step6: removes a final –e

 All these steps are continous process as it can be seen in stem function,result of step1 becomes input to step2 and so on.
4 Hierarchical Clustering
Hierarchical clustering gives a series of clustering results at each level through merging process. The basic algorithm of the hierarchical clustering is shown below, where Data is the input data with size of n. Note that distMatrix is a matrix of distance between any two clusters. In our implementation, it is initially set to an m xm lower triangle matrix with elements of Os in main diagonals where distMatrix(i, j) is the element of ith row and jth column of the matrix. We use merge(Cluster(i), Cluster(j)) as the method to merge two clusters. The nearest pair of clusters in a collection of clusters is the pair of clusters which have shortest all pair distance between. The pair can be easily identified as the two clusters corresponding to the row and the column of the minimum element blow the diagonal of distMatrix. Note that merging process stops when the desired number of clusters reaches by setting loop times. Clustering results are stored in remaining clusters.

Algorithm Hierarchy (Data)

1. Assign each point to a cluster, and generate n clusters, say, Cluster (1), Cluster(2)... Cluster(n).

2. Start off the merging process as follows.

2.1. Calculate and form initial an nxn all-pair distance matrix, distMatrix(n, n)

2.2. Based on distance matrix, identify a pair of nearest clusters, say, Cluster(i) and Cluster(j), then merge them. Set Cluster(i) = merge(Cluster(i), Cluster(j)).

3. Recalculate distance matrix

3.1. Assume Cluster(s) is the last one in the sequence of clusters, set Cluster(j) = Cluster(s) and then delete Cluster(s).

3.2. Recalculate the distance of Cluster(i) and Cluster(j) to other remaining clusters respectively

3.3. Based on above calculation, form an (s-I)x(s-1) distance matrix distMatrix(s-1,s-1)
4. Go to 2.2 until number of clusters is reduced to 1 If clustering starts off from individual points as done in original hierarchical clustering method, the number of startup clusters will be large and thus clustering will be temporal and spatial expensive (O (m2), where m is total number of objects).
If clustering starts off from individual points as done in original hierarchical clustering method, the number of startup clusters will be large and thus clustering will be temporal and spatial expensive (O (m2), where m is total number of objects). Therefore rather than start clustering process from individual points, we can first index those points and then cluster those minimal bounding boxes of leaf nodes. We would like to point out that the value of m cannot be big, otherwise the points in a leaf node could belong to two or more clusters. The value of m cannot be too small either, otherwise hierarchy clustering (m=1).
Page Rank
The PageRank is reference to the good pages. Hence, pages that are referenced by good pages have higher PageRank. Although there are several formulations of PageRank, we use the random surf metaphor. Suppose that you are a user surfing the Web in a random fashion, such that, if you are in a page, with certain probability you get bored and leave the page, or you choose uniformly at random to follow one of the links on the page where you are (removing self links). Hence, the probability of being in page p is

PR (p) = q/T+ (1-q) ∑​ PR (r‑i)/L (r​​​​​​​​​‑i)

 i

Where T is the total number of pages, q is the probability of leaving page p (in the original work q = 0:15 is suggested), ri are the pages that point to page p, and L (ri) is the number of links in page ri. These values can then be used as page ranking, and can be computed by an iterative algorithm converging quite fast, as we are interested in the ranking order rather than the actual ranking values. The term q is called damping factor as decreases exponentially link spamming based in sequences of links that return to a page. WLRank (Weighted Links Rank) assigns the ranking value R (i) to page i using the following equations:

R(i)=q/T+(1-q) ∑​W(j,i)R(j)/ ∑​​​​k W(j,k), W(j, i) = L(j, i)(c + T(j, i) + AL(j,i) + RP(j, i)) ;

where given a link from page j to page i we have:

· L(j, i) is 1 if the link exists, or 0 otherwise, and c is a constant that gives a base weight to every link,

· T(j, i) is a value that depends on the tag where the link is inserted,

· AL(j, i) is the length of the anchor text of the link divided by a constant d that depends that estimates the average anchor text length in characters, and

· RP (j, i) is the relative position of the link in the page weighted by a constant b.

As in PageRank, R (i) corresponds to the probability to reach page i while surfing the Web. If W (j, i) = L (j, i) we have the original PageRank.

Finally, the term RP (j, i) gives more weight to links that are at the beginning of the page rather that at the end of the page (physically in the HTML code, not necessarily in the browser view).

5. CONCLUSION AND FUTURE WORK
SWSE provides effective solutions to some of the problems encompassing the World Wide Web as of today. Bringing an order to the scattered information on the World Wide Web is one of the paramount challenges of search engine community. We demonstrated how Normalization of words and numbers can be implemented in a simplified manner. Stemming was implemented using the Porter’s algorithm. Logical operators assisted the search pertaining to multiple keywords. Stop Words helps in saving space on the disk. Although the natural language based search hasn’t been implemented but it can be taken up for future works. As of now we have not implemented multithreading. Also its performance on a large network having huge repositories and processors in a distributed computing environment can be taken for future studies
REFERENCES
[1] L.Ding, T.Finin, A. Joshi, Y. Peng,R. Pan and R. Reddivari, “ Search on the Semantic Web”, IEEE Computer, vol.38, no. 10, pp.62-69, 2005

[2] Tao Jiang, Ah-Hwee Tan, Mining
 Generalized Association of Semantic

 Relations from Textual Web Content, IEEE Transaction on Knowledge and Data engineering,Vol. 19, No. 2, Feb2006

[3] Kyumars Sheykh Esmaili, Hassan Abolhassani, A Categorization Schema for Semantic Web Search Engines, 2006

[4] Sergey Brin and Lawrence Page, The Anatomy of a Large Scale Hypertextual Web Search Engine, june 2008

[5] A. Pisharody and H.E. Michel, “Search Engine Technique Using Keyword Relations”, proc. Conf on Art. Int., pp. 300-306, 2005

[6] Y.J. Zhang and Z.Q. Liu. “Refining Web Search Engine Results Using Incremental Clustering”, International Journal of Intelligent Systems, Vol. 19,no.1, pp. 191-199, 2004

[7] Fayyad, U., and Uthurusamy, R., "Data mining and knowledge discovery in databases: Introduction to the special issue," Communications of the ACM, 39(11), November, 1999.

[8] Shaban, K., Information Fusion in a Cooperative Multi-Agent System for Web Information Retrieval, Master of Science Thesis, University of Guelph, 2002.

[9] Jain, A. K., and Dubes, R. C., “Algorithms for Clustering Data”, Prentice Hall, Englewood Cliffs NJ, U.S.A.

[10] Podder, S.; Shaban, K.; Sun, J.; Karray, F.; Basir, O.; and Kamel, M. “Performance improvement of automatic speech recognition systems via multiple language models produced by sentence-based clustering,” In proceedings of IEEE International Conference on Natural Language Processing and Knowledge Engineering, Beijing, October, 2003.

[11] Baeza-Yates, R., and Ribeiro-Neto, B., Modern Information Retrieval, ACM Press, New York, 1999.

[12] Lee, D. L., Chuang, H., and Seamons, K., “Document Ranking and the Vector-Space Model,” IEEE Computer, Theme Issues on Assessing Measurement, 14(2):67- 75, April/May, 1997.

[13] Jordi Conesa, Veda C. Storey, Vijayan Sugumaran, Improving web-query processing through semantic knowledge, September 2007

[14] Fabrizio Lamberti, Andrea Sanna and Claudio Demartini, A Relation Based Page Rank Algorithm for Semantic Web Search Engines,2008

[15] Hartigan, J. A., and Wong, M. A. “A K-means clustering algorithm”. Applied Statistics, 28:100-108

Indexer

Web Pages

Web Pages

Web Crawler

Request

Index files

Ranking

Stop Word

Normalization

Go Word

Stemming

Results

End user

Search

Engine

Interface

Query

Query

Parser

Extract valuable knowledge

WWW

Clustering Process

Document Collection

Documents Cluster

High intra-cluster similarity

Documents

Clustering

Documents Cluster

Low inter-cluster similarity

Knowledge Discovery

Back-end process

Front-end process

Collected

Search

Results

Copy Right @CSE/IT/ECE/MCA-LVEC-2009

